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Abstract

Videos taken from a single camera are a most common source of human
motions. In this paper, we present a novel method to reconstruct the mo-
tion of a human-like figure from a single video stream. We exploit a motion
library to resolve the depth ambiguity in recovering the 3D configurations
from 2D features. Our reconstruction method takes three major steps: time-
warping to align the reference motion with that in the video, reconstructing
the joint orientations, and estimating the root trajectory. Experimental re-
sults show that our approach can reconstruct highly dynamic motions such
as shooting of soccer players, which would be hard to do, otherwise.

1 Introduction

Recently, motion capture techniques have been applied successfully to animat-
ing human-like figures. With those techniques, realistic motions can be produced
rapidly, which would be hard to achieve, otherwise. Live-captured motion clips
are typically short and related to particular characters and environments. Thus,
there have been a great deal of efforts to develop specialized tools to reuse them.
With the aid of such tools, animators can adapt the captured motions to other char-
acters and environments. However, together with special hardware devices, the
motion capture process requires a puppeteer(or an actor) who performs a sequence
of motions carefully under a controlled environment in accordance with a scenario.
Thus, we cannot directly apply motion capture techniques to reproducing motions
in actual situations such as sports events and dance performances.

Single-camera videos are a most common source of human motions. Many
researchers have tried to capture a variety of human motions from videos for var-
ious purposes [1, 12, 15, 18, 19, 25, 26]. However, reconstructing motion from a
single-camera video is still demanding even with the state of the art techniques.



Most of the previous techniques are inadequate to reconstruct highly dynamic mo-
tions for avariety of circumstances, and the quality of the reconstructed motion is
not adequate to synthesize realistic animation.

To reconstruct human motion from a video, we should recover the 3D config-
uration of afigure from its 2D features such as the positions of the joints and the
end-effectors. The main difficulty in motion reconstruction from a single-camera
video stemsfrom the depth ambiguity caused by the 3D projection onto 2D images.
Moreover, the focal length of the camerais unavailable, and the camera may move
along with the actors. Thus, the actual trajectory of an actor is hard to capture only
with the information available in the video.

In this paper, we present a novel approach to reconstruct a motion of a human-
like figure from a single video stream using a motion library. We assume that the
scaled lengths of body segments of an actor in the video and its 2D feature po-
sitions are available. Those may be estimated automatically [18, 25] or obtained
interactively. Guided by those data, we reconstruct the motion by deforming a cap-
tured motion clip in the library. Our approach requires a motion library containing
a motion clip similar to the target motion in the video stream. In theory, such a
motion library is not always available since human motions are too diverse to be
accommodated in the library. We take a practical approach assuming that we know
what to reconstruct in advance. For example, suppose that we are to reconstruct
shooting motions in a soccer game recorded in a video. After building a library
of appropriate live-captured motion clips for shooting, we use them to reconstruct
actual players’ shooting motions in the video.

2 Reated Works

2.1 Motion Reconstruction

There have been research results [1, 2] to reconstruct human motions from videos
automatically with image processing techniques. In those researches, statistical
models are employed to estimate 3D configurations of human bodies. Azarbaye-
jani et a. [1] proposed a method to track the motion of a human body with a
monocul ar/stereo video stream in real time. They segmented the human body with
several blobs and tracked the 3D position of each blob with a statistical dynamic
model. Bregler and Malik [2] also estimated amotion from avideo sequence taken
from one or more cameras. Based on twist and exponential maps to represent the
kinematic relationship of an articulated model, they reconstructed its 3D configu-
ration. They tried to track the features in the video automatically.

On the other hand, some researchers have concentrated on developing efficient
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ways to extract 3D information from known 2D features. Zheng and Suezaki [26]
introduced a model-based approach to acquire motions of an articulated model
from a single video stream. They selected several keyframes to recover the con-
figurations of the model and interpolated them to obtain a motion. Rehg et a. [6]
proposed an off-line algorithm to estimate the maximum aposteriori traectory from
the 2D measurements subject to anumber of constraints such as a kinematic model
and joint angle limits.

Recently, an interesting attempt has been tried to address the reconstruction
problem in some different point of view. Howe et a. [11] proposed a scheme to
reconstruct the 3D motion of an articulated model from a single-camera video.
Relying on prior knowledge about human motion learned from training data, they
resolved the inherent depth ambiguity of 2D videos. They treated 3D motion track-
ing as an inference problem.

2.2 Motion Reuse

Due to the success of motion capture technology, there is a vast amount of litera-
ture devoted to motion capture and reuse. Bruderlin and Williams [3] introduced
the idea of displacement mapping to alter a motion while preserving its details.
Witkin and Kass [ 23] proposed a spacetime constraint technique to produce the op-
timal motion which satisfies a set of user-specified features. Cohen [4] developed
a spacetime control system which alows a user to interactively guide a numeri-
cal optimization to find an acceptable solution in a feasible time. Rose et a. [20]
adopted this approach to generate a smooth transition between mation clips. Gle-
icher [9] simplified the spacetime problem by removing the physics-related aspects
from the objective function and constraints for motion editing. He aso applied
this technique for motion retargetting [10]. For interactive performance, Lee and
Shin [13] combines a hierarchical curve fitting technique with a new inverse kine-
matics solver for adaptively refining a motion to meet the spacetime constraints.
Popovic and Witkin [16] introduced anovel agorithm for editing captured motions
that takes dynamics into consideration. They simplified a complex dynamic sys-
tem without losing the fundamental dynamic properties of motion. Tak et a. [22]
proposed a motion balance filter that postprocesses the edited motion to keep the
dynamic balance using the notion of azero moment point (ZMP).
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Figure 1: Block diagram of our reconstruction method

3 Overview

In this paper, we introduce a novel approach to reconstruct the motion of a human-
like figure from a single video stream by exploiting a live-captured motion. We
exploit aprior knowledge about the target motion to resolve the depth ambiguity in
recovering the 3D configurations from 2D features. Using the motion in the library
as a reference, we first warp the reference motion to establish the time correspon-
dence with the motion in the video, and then reconstruct a motion by deforming
the timewarped reference motion guided by the features in the video. Since the
input video is taken from an uncalibrated camera with unknown trajectory, we
can not directly acquire aroot trajectory of the motion from the video. Thus, we
first recover the joint orientations to achieve a sequence of postures such that their
projected joint positions are coincident with the features in the video. Then, we
derive a natural-looking root trgjectory, exploiting the set of 2D features derived
from kinematic constraints given at frames and the dynamic property of the refer-
ence motion. Figure 1 shows the block diagram that describes our reconstruction
method.

To make the time correspondence between the input video and the reference
motion, we start with marking their keytimes, that is, the moments of interaction
between the actor and his’her surrounding environments in the video. Again, this
can be done either automatically with existing image tracking methods or interac-
tively. We timewarp the reference motion to synchronize its keytimes with those
of the video. This process reparameterizes the reference motion clip. We use the
timewarped motion as an initial guess for the target motion to reconstruct.

To obtain a relative posture of the 3D configuration of the articulated figure



with respect to the root segment, we establish the constraints that force their pro-
jected joint positions are coincident with the corresponding features in the video.
Since there are, in general, multiple configurations that satisfy these constraints,
we use an objective function to select a configuration that has minimum devia-
tion from that of the reference motion. We propose an efficient method to acquire
the articulated body configuration as well as the unknown camera parameters, si-
multaneously. To construct a smooth motion, we compute the posture difference
between the reference motion and the reconstructed motion at each frame, and then
make a posture displacement map that approximate the posture differences using
the multilevel B-spline approximation technique [14]. With this map, we deform
the reference motion.

Finally, we estimate a root trajectory to complete the reconstruction process.
We have two different cases: In thefirst case, we deal with the motion that exhibits
some interactions between the actor and his’her surrounding environment. In this
case, we modify the root trajectory of the reference motion to acquire a feasible
root trgjectory of the target motion that preserves the interactions. Using the mul-
tilevel B-spline approximation technique [14], we interpolate the displacement of
the root segment at each frame of the interaction while smoothly propagating ap-
proximation errors to neighboring frames. In the second case, we treat a motion
that does not show such interactions. In this case, we exploit the dynamic property
of the reference motion that should be preserved. In particular, assuming that the
articulated figure consists of a set of rigid segments, we obtain the root trajectory
of the motion from the center of gravity(COG) trajectory of the reference motion.

The remainder of this paper is organized as follows. Section 4 describes our
keytime-based timewarping, and section 5 shows how we can obtain a proper cam-
era parameters and a sequence of relative postures from the input video. In section
6, we complete the motion reconstruction process combining the relative postures
and the root trajectory. Section 7 demonstrates experimental results for shooting
motions of soccer players. Finaly, we conclude this paper in section 8.

4 Timewarping

A motion is atime-varying function that gives the configuration of an articulated
figure. For an articulated figure with n joints, we denote a motion by m(t) =
(P1(t),q1(t), -+ ,an(t))’, where p; () € R and q; () € S describe the trans-
lational and rotational motions of the root segment, respectively, and g(t) € S3
give the rotational motion of the i-th joint for 2<i<n. We denote the features in
avideo stream by m(t) = (p1(t), -, Pn(t))?, where p(t) € R? gives the pro-



jected position of the i-th joint for 1<i<n. The features given by m(¢) represents
the projection of the target motion m(¢) onto the image at time ¢.

Given the reference motion m(¢) and the 2D features m(¢) in the video, we
establish a time correspondence between m(t) and m(t). It is well-known that
the dynamic timewarping technique gives an optimal sample correspondences be-
tween two functions [3, 5]. However, the camera parameters are not available at
each frame. Thus, the dynamic timewarping technique cannot be applied directly
to building a time correspondence between m(¢) and m(¢), which have different
dimensions.

To address this problem, we start with a set of keytimes in the video, that is,
the moments of interaction between the actor and his’her surrounding environment.
For example, the keytimes of human walking motion can be described as the in-
stances of heel-strikes and toe-offs. For a kick motion in a soccer game, the most
important keytime is the impact moment between a foot of a player and a ball.
Such a keytime can be easily marked in the video as well as in the reference mo-
tion interactively. They may also be tracked automatically [18, 25]. Assuming that
they are available, our task is to timewarp the reference motion to have the same
keytimes as specified in the video.

For thei-thjoint, let K; = {¢;1,--- ,t; .} beaset of keytimesfor the reference
motionand K; = {#; 1,-- - , %} the counterpart for the video stream. To timewarp
the reference motion to make K; coincide with K; for all 4, we reparameterize the
reference motion m(¢) by a set of linear mappings defined as follows:

t(t) = tig+ (M) (t—tix) , (1)
ik+1 — Lik

where t; , < t<t; ;1. Here, ¢t and ¢ describe the original time of the reference

motion and its reparameterized time, respectively. Figure 2 illustrates this proce-

durefor asinglejoint. Since ahuman-like articulated figure has multiple joints, we

apply this procedure for each joint repeatedly as shown in Figure 3.

5 Joint Orientation Reconstruction

5.1 Kinematic Constraints

At each frame, the projected joint positions of the articulated figure in the reference
motion need to be coincident with their corresponding features in the video. The
input video is taken from an uncalibrated camera with unknown trgjectory, and
the reference objects are not always available int the video. Therefore, to acquire
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(a) Original keytimes and joint signal

(b) Target keytimes and timewarped joint signal

Figure 2: Timewarping of a reference motion clip using a set of keytimes in the
input video sequence and the reference motion. The curve represents the change of
one component of a unit quaternion with respect to time. (&) Original joint signal
with a set of keytimes, K; = {t;0,%i1,%i2,%,3}. (b) Timewarped motion by a set
of keytl mes, Kz = {fiyo, fi,la fig, fi,g}.

the joint positions in the globa frame, we describe them relatively from the root
segment. In other words, the configuration of the articulated figure is: x(t) =
m(t)|p, (1=, that is, x(£) = (03,q(t)1, -~ ,q(t),)”, where 03 represents the
origin of thelocal frame of the root segment.

To describe the relationship between a 3D configuration of afigure and its pro-
jection onto an image plane, we need a cameramodel. In general, a camera model
with full degrees of freedom is parameterized by ¢ = (4, ty,t., 75, 72,7y, @, f),
where (t,,t,,t.) and (r,,ry, ) describes the position and orientation of the cam-
era, respectively, o describes its aspect ratio, and f is its focal length. We set
the camera posture such that the projected position of the root segment is aways
placed at the center of the image plane. Then, we can describe the configuration of
the camera by the distance to the root of the articulated figure and its orientation.
Our reduced camera model is parameterized by ¢ = (v, 7,,7y,7), Wherey isthe
ratio of this distance to f.

With the camera parameters c, the kinematic constraint on the articul ated figure
is defined as follows:

1B:(£) — Pefi(x(t))]| = 0 &)

where f;(-) is the forward kinematic function for the i-th joint, and P, describes



(a)Initial keytimes (b) Global reparameterization

(d) Reparameterization by (c) Reparameterization by
keytimes of the right foot keytimes of the left foot

Figure 3: Timewarping of areference motion clip using multiple sets of keytimesin
the input video sequence and the reference motion. There are two sets of keytimes
for left and right foots. We mark a band between two distinct keytimes for visual
aids. (@) Initial sets of keytimes for the left(dark color) and the right(light color)
foot in the input video(above) and the reference motion(below) with a time line.
(b) Reparameterization of the reference motion to have the same duration with the
input video. (c) Reparameterization of the reference motion at a set of keytimes of
the left foot. (d) Reparameterization of the reference motion at a set of keytimes of
the right foot.



the projection matrix.

5.2 Objective Function

Dueto the excessive degrees of freedom for an articul ated figure, there are typically
many possible configurations that satisfy the kinematic constraints given by Equa-
tion 2. DiFranco et a [6] pointed out that this depth ambiguity can be removed
partially using some additional constraints such as joint angle limits. Even with
such additional constraints, the problem of motion reconstruction is still under-
constrained. To achieve the best configuration, we exploit the reference motion for
the articulated figure. Assuming that the reference motion is similar to the target
motion in the video, the minimum change of the joint orientations from the refer-
ence motion ensures the naturalness of the reconstructed motion. Therefore, we
find a configuration x(¢) by minimizing the following objective function:

9(x(t)) = dist(x" (), x(t))- ©)

Here, x"(¢) describes the configuration of an articulated figure in the reference
motion at time ¢, and dist(-) describes the distance between two orientations:

dist(x" (), x(1)) = > | In((as(t))""af (1)), 4
i=1
where In(-) isthe logarithmic map of unit quaternions [21].

5.3 Solution Method

Our joint orientation reconstruction problem is reduced to finding the configuration
that minimizes the objective function g(-) while satisfying the constraints given by
Equation 2. A typical approach to the constrained optimization is to transform the
constrained problem into an unconstrained version with extra penalty functions.
The objective function for the unconstrained version is

n

g(x(1) =Y _(IPi(t) = Pefi(x(1))|*) + w(dist(x" (1), x(t))), ®)

1=1

where w is aweighting factor combing the two different measures. The first term
of Equation 5 represents the difference between the projected joint positions of the
articulated figure and the marked joint positions in the input video, and the second
term measures the deviation of the posture of the figure from that of the reference
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Figure 4: Iterative scheme to reconstruct the configuration of the camera and the
articulated figure. This procedure starts with an initial configuration of the cam-
era computed by 3 coplannar points specified by a user. The initial guess of the
articulated figure is automatically given by the reference motion.

motion at each time instance. We adopt the conjugate gradient method to minimize
this objective function [17].

The major difficulty in solving the Equation 5 stems from the excessive degrees
of freedom of an articulated figure. A reasonable human model for computer ani-
mation has about 40 degrees of freedom. We specify much fewer constraints, com-
pared to the degrees of freedom to determine. Furthermore, the unknown camera
parameters complicate the problem. Typical humerical solvers such as conjugate
gradient methods show the best convergence property when the objective function
has a quadratic form [17]. The Equation 5 has a combination of parameters for
both camera and articulated body configuration. We handle the two different sets
of parameters separately during optimization to acquire better convergence. We
aternatingly optimize the camera posture and the body configuration while fixing
the other. Figure 4 shows this iterative process of acquiring both camera and body
configuration, simultaneously.

It iswell-known that agood initial guess for optimization problem isimportant
to obtain a good solution with better convergence [8, 7, 17]. In our reconstruction
method, we use the timewarped reference motion astheinitial estimate of the target
posture. Since our camera model has four degrees of freedom, we select three
coplannar points lying on the center of pelvis and both hip joints of the articulated
figure, respectively, to estimate the initial camera configuration with least squares
approximation.
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5.4 Motion Smoothing

In practice, it is very difficult to track the 2D features in a video precisely with-
out any explicit marker on the human body. Thus, the reconstructed joint ori-
entation contains the jerkiness caused by the noisy 2D features. To reduce such
jerkiness, we combine motion displacement mapping [3, 24] with Multilevel B-
spline fitting [13, 14]. A motion displacement map describes the difference be-
tween two motions. In our case, the displacement map between the configuration
of the reference motion x” (¢) and the recovered configuration x(t) is defined as
d(t) = x(t) © x"(t), that is,

03 03 03 05
aty = |0 |00 5 [$O| _ @@ ta@)
va®]  laa®]  lan®]  [((an ) an(t)

where v;(t) € R3 is the rotation vector of the i-th joint for 1 < i < n. Thus, a
new configuration can be recovered by adding the displacement map to the original
motion asx(t) = x"(¢) @ d(¢t), that is,

03 03 03
X(t) = Q’i:(t) o Vl:(t) _ Q’i(t)eXf)(w(t)) , @
(1) Va(t) (1) exp(va(t))

From the joint orientation displacement d(i) at each frame 7, we compute a
smooth displacement map d(¢) that approximates d(z) for all i. We employ multi-
level B-spline approximation technique [14], which uses a series of B-spline func-
tions with different knot spacings on the same interval. In contrast to the local
curve fitting with B-splines, the hierarchical structure of the multilevel B-spline
fitting can make a smooth shape without undulations, by globally propagating er-
rors at coarse levels and adding details at fine levels. The function from the coars-
est knot sequence provides arough approximation, which is further refined by the
functions derived from subsequent finer knot sequences. Finaly, we apply the
smooth displacement map d(¢) to the reference configuration x(¢) to achieve the
final configuration x°(¢) as follows:

x(t) =x"(¢t) @ d(?). (8)

This procedureisillustrated in Figure 5. Here, we need to trade off the smoothness
of the recovered joint orientations against their approximation accuracy, depending
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Figure 5: Smoothing the joint orientation. (&) Curves represent the one component
of aunit quaternion of the reference motion and the recovered posture, respectively.
(b) Joint orientation differences d(7) (c) Smoothed joint orientations d(¢) that ap-
proximates the differences. (d) Sum of the reference configuration and smoothed
differences.

on the quality of 2D features. By properly choosing the resolution of knots for
noise filtering, we reconstruct a smooth motion even with noisy 2D features while
keeping acceptable accuracy.

6 Root Position Estimation

In the previous sections, we have described a method to recover the joint orienta-
tions of the articulated figure. Now, we construct a proper tragjectory of the root
segment to complete the reconstruction process. The final motion m(t) is the di-
rect sum of thejoint orientations x(¢) and the displacement map d(¢) that describes
only the translational movement of the root segment:

03 p1(t) p1(t)
t 0 t

m(t) = x(t)@d(t) = q1:() ® :3 = q1:() ; C)
qn(t) 03 qn(t)

where p(t) is the root trajectory in the global frame. Since the camera may move
along with the actors, the actual trajectory of the actor is hard to capture only with
the information given in the video. We try to construct a plausible root trajec-
tory while satisfying the user-specified constraints and the dynamic property of the
reference motion.
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(a) Timewarped reference motion (b) Reconstructed motion

Figure 6: An artifact of direct substitution of the root trgjectory. The artificia
ground line is drawn for visua aids. (@) Timewarped reference motion. (b) A
motion using the root trajectory of the reference motion. The motion looks like
floating above the ground.

We discriminate two classes of motions according to their interaction with the
environment, which is the source of constraints. In the first case, we deal with the
motion that exhibits some interaction between the actor and his’her surrounding
environment. Locomotion is atypical example since the feet of the actor contact
with the ground. In the second case, we treat a motion that does not show such in-
teraction, for which jumping motion isatypical example. In each case, we describe
how to obtain the displacement map d(t), in particular, the root position p; ().

6.1 Casel: Motion involving interaction with the environment

Consider the kick motion of a soccer player as shown in Figure 6. The recon-
structed motion is so dynamic that the root trgectory is quite different in height
from that of the reference motion. Therefore, we adjust the height of the root seg-
ment to make the stance foot contact with the ground at every constrained frame.
We start with the motion () = x°(t)®(p}(t),0s,--- ,03), where x¢(t) and
p7 (t) are the recovered joint orientations as explained in Section 5.4 and the root
trajectory of the timewarped reference motion, respectively. We compute the dis-
tance d(z) between the stance foot in the motion r(¢) and the ground at every
constrained frame ¢, and then construct a smooth displacement map d(¢) that ap-
proximates d(z) using the multilevel B-spline approximation method [14]. With
m(t)®(d(t),0s,---,03)" astheinitial guess, we adopt the motion retargetting
technique [13] to determine the final target motion m(%).
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6.2 Case 2. Motion without involving interaction with the environ-
ment

Unlike the previous case, amotion in this case does not involve any interaction with
the environment as observed in ajump motion. We exploit a dynamics property of
the reference motion to determine the root trajectory. Given an initia velocity
with no external forces except for gravity, the center of gravity(COG) of an object
follows a parabolic trajectory. We measure the initial velocity of the actor at the
moment to start a motion. The COG trajectory cog’ (¢) of the reference motion is
defined as follows:

Eélnizg(t) , (10)

where p; (¢) and m; for 1<i<n represent the vector from the root position pj ()
to the COG of the i-th link and its corresponding mass, respectively. Since the
reference motion istimewarped linearly as described in Section 4, we aso linearly
scale the COG trajectory of the reference motion to approximate the COG trajec-
tory cog(t) of the motion to reconstruct as follows:

cog(t) = scog'(t) = p(t) + w, (1)

i=1 T

cog'(t) =p'(f) +

where s and p;(t) for 1<i<n denote the scaling factor for timewarping at the
initial frame and the vector from the root position p(t) to the COG of the i-th link,
respectively. p;(¢) can be obtained from the recovered joint orientations x°(¢).
Thus, the root trajectory p(t) is computed by combining Equations 10 and 11:

n (DT () — D,

ZZ:I mZ(I:Z (t) P (t))> ) (12)
Ei:l my

As shown in Figure 7, the reconstructed motion with the root trgjectory of the ref-

erence motion follows an infeasible, distorted COG trajectory. However, that with
the COG trgjectory of the reference motion follows a smooth parabolic trgectory.

p(t) = sp" (1) + s (

7 Experimental Results

We use ahuman model of 40 DOFs: 6 DOFsfor the pelvis position and orientation,
3 DOFs for the chest, 3 DOFs for the neck, and 7 DOFs for each limb. The mo-
tion clips are sampled at the rate of 60 frames per second, and their keytimes are
obtained by interactively specifying the moments of interaction. To demonstrate
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(a) Reconstructed motion with an infeasible COG trajectory (b) Reconstructed motion with an estimated trajectory

Figure 7: Estimating atrajectory of the root segment during a jump motion. The
curve represents the COG trgjectory of the motion. (@) The reconstructed result
using the root trajectory of the reference motion. (b) The reconstructed result using
the COG trajectory of the reference motion after timewarping.

the effectiveness of our approach in rea situations, we recover shooting motions
of soccer players from videos. Table 1 shows the repertoire of motion clips in
our motion library. Each motion clip contains a highly dynamic motion of a short
duration, that is, typically 2~3 seconds.

We use video clips available on public sites for soccer games. We interactively
mark the 2D features in the video, each of which corresponds to a projected joint
position of our human model. We also specify the keytimes interactively to build
the time correspondence between the reference motion and the video stream.

Our reconstruction method is implemented in C++ on top of MS Windows
20007 and the TGS Open Inventor’ ™ that is a convenient toolkit to support 3D
graphics primitives. Experiments are performed on a Pentium PC (Intel Pentiuml |l
733MHz processor and 512MB memory).

7.1 Kick motion of a soccer player

Figure 8 shows the kick motion of a soccer player, which we reconstructed with
a reference motion clip, “place instep kick”. The video clip used in this example
contains 51 frames. The camera tracks the player from the righthand side. There
are six keytimes specified in this case: four for the left foot and two for the right
foot. Since the target motion takes more inclined postures than the reference mo-
tion, the root trajectory has been adjusted to keep the interaction between every
stance foot and the ground. Table 2 illustrates the error e(t) of our reconstruction
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method defined as follows:
e(t) = Y _IIPi(t) — Pefi(x“(t))]?, (13)
i=1

where p;(t) and x“(t) represent the 2D feature position of i-th joint in the image
and the final joint configuration at time ¢, respectively. As shown in Table 2, the
timewarping reduces the maximum error remarkably. While the unit knot spacing
provides amotion that is exactly matched with the features in the video, there ex-
ists some jerkiness due to the noisy 2D features. A knot spacing of four gives a
smooth motion without significant increase in the average error. It takes 19.34 sec-
onds to reconstruct the kick motion excluding 2D feature marking. The execution
time mainly depends on the number of frames in numerical optimization for joint
orientation recovery.

7.2 Heading motion of a soccer player

Figure 9 shows the heading motion of asoccer player, which we reconstructed with
a reference motion clip, “left jump heading with both feet”. The video clip used
in this example contains 37 frames. In this example, the camera tracks the player
from the rear. We specify five keytimes in this case: two for each foot, and one
for the head. Since the target motion takes afree flight during the motion with the
external force of gravity, the root trgjectory have been adjusted to keep the dynamic
balance during the jump. The error defined by Equation 13 is shown in Table 2.
Excluding the time for 2D feature marking, it takes 14.86 seconds to reconstruct
the heading motion.

8 Conclusion

In this paper, we have presented a novel method for reconstructing human motions
from a single video sequence using a motion library. Our reconstruction method
takes three magjor steps. timewarping to align the reference motion with that in
the video, reconstructing the joint orientations, and estimating the root trajectory.
Since the motion reconstruction problem is coupled with that of camera posture
computation, we aso describe a simple camera model to recover the camera con-
figuration from the video sequence for our purpose. Exploiting a 3D motion in the
library, we can resolve the inherent depth ambiguities in the reconstruction prob-
lem. The reconstructed motion is smooth even with noisy features. Moreover, our
method can reconstruct highly dynamic motions, in which the time coherence is
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Figure 8: An examplewith akick motion. (Top) Input image sequence with feature
points. (Middle) Reference motion. (Bottom) Reconstructed motion.
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Figure 9: An example with a heading motion. (Top) Input image sequence with
feature points. (Middle) Reference motion. (Bottom) Reconstructed motion.
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Table 1: Reference motions : kicking and heading motions of soccer players. (f
represents half-volley) This classification is based on the configuration of legs and
heads with respect to ball position.

category ball placement category head direction
(kicks) place | volley(h)t | volley | diding || (headings) front | left | right
instep ) ) ) - stand o o o
inside o o - o jump (single foot) o o o
outside o ° o o jump (both feet) o ° °
toe o - - - stand back ° o o
hill o - - - jump back o o o
overhead - - o -

cut o - - -

turning o - - -

Table 2: Error analysis data. We compute the minimum, maximum, and average
error over all frames. The errors are measured in the normalized coordinate of the
image, that is, al the coordinate values are in the interval [-1,1].

kick motion (51 frames) heading motion (37 frames)

min. max. avg. min. max. avg.
original 0.0331 | 0.3049 | 0.1040 | 0.0116 | 0.1918 | 0.0846
timewarped 0.0272 | 0.1624 | 0.0915 | 0.0100 | 0.1397 | 0.0710
reconstructed (knot spacing:1) | 0.0011 | 0.0100 | 0.0043| 0.0005| 0.0100| 0.0051
reconstructed (knot spacing:4) | 0.0013 | 0.0227 | 0.0088 | 0.0008 | 0.0159| 0.0058
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weak in the video. Provided with afeasible set of motions as alibrary, our method
can be used to obtain a wide variety of motions in real situations such as sports
events. We have demonstrated the effectiveness of our method by reconstructing
shooting motions of soccer players from real videos.
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