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Abstract

Typical high-level directives for locomotion of human-like characters are en-

countered frequently in animation scripts or interactive systems. In this paper, we

present a new scheme for planning natural-looking locomotion of a biped figure to

facilitate rapid motion prototyping and task-level motion generation. Given start

and goal positions in a virtual environment, our scheme gives a sequence of mo-

tions to move from the start to the goal using a set of live-captured motion clips.

Combining two novel ideas, that is, probabilistic path planning and hierarchical

motion fitting, our scheme consists of three parts: roadmap construction, roadmap

search, and motion generation. We randomly sample a set of valid footholds of the

biped figure from the environment to construct a directed graph, called a roadmap,

that guides the locomotion of the figure. Every edge of the roadmap is attached

with a live-captured motion clip. Augmenting the roadmap with a posture transi-

tion graph, we traverse it to obtain the sequence of input motion clips and that of

target footprints. We finally adapt the motion sequence to the constraints specified

by the footprint sequence to generate a desired locomotion.

1 Introduction

1.1 Motivation and Objectives

The recent advance in motion capture systems offers a convenient means for acquiring

realistic motion data. Due to the success of such systems, realistic and highly detailed

motion clips are commercially available and widely used for producing visually con-

vincing animations of human-like 3D characters in a variety of applications, such as

animation films and video games. Efforts have been focused on editing and manipu-

lating live-captured motion clips to provide effective ways of adapting motion clips to
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the desired constraints specified by animators [7, 10, 27, 37, 41, 43]. However, motion

planning with such motion clips has not been explored, yet.

An animation scenario is composed of certain tasks, each of which can be fulfilled

with a sequence of motions. Task-level motion planning with canned motion clips

can provide realistic motions at the early stage of the animation design for rapid mo-

tion prototyping, that facilitates early validation of an animation. It can also support

an interactive animation, where a user-controlled character interacts with a synthetic

environment. To generate realistic motions in such an interactive animation, the user

needs task-level directives. However, traditional motion planning techniques [14, 26]

can hardly achieve such directives with captured motion clips.

In this paper, we present a new planning scheme that produces a natural-looking

motion for a human-like biped figure to move from a given start position to a goal

using a set of prescribed motions. Combining two novel ideas, that is, probabilistic

path planning [19] and hierarchical motion fitting [27], our scheme finds a sequence of

input motion clips and that of target footprints, and then retargets the motion sequence

to yield a desired motion that follows the footprints. The scheme enables a human-like

figure to perform a variety of motions such as running in a plain region, jumping over

a crevice, and walking over stepping stones to reach the goal.

1.2 Related Work

Planning locomotion of a human-like figure is related to several different areas of re-

search. For our convenience, we classify these related works into four categories: biped

locomotion, human navigation, probabilistic path planning, and motion editing.

Biped locomotion: Generating realistic biped locomotion has received increasing

attention in computer animation. Bruderlin and Calvert [6] presented a goal-directed

dynamic approach that generates a desired walking motion for given parameters such

as velocity, step length, and step frequency. Boulic et al. [5] exploited biomechanical

data to utilize their intrinsic dynamics. Ko and Badler [21] also presented a similar

technique to produce dynamically-balanced walking that was further generalized for

curved path walking. They also were able to generate footprints, automatically. Raib-

ert and Hodgins [34] showed that hand-designed controllers can produce physically

realistic legged locomotion. Hodgins et al. [13] extended those controllers to more

complex models such as human athletics. Hodgins and Pollard [12] also described an
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automatic method to adapt existing controllers to new characters. An optimization-

based scheme was proposed by van de Panne [42] to generate biped locomotion from

given footprints. This scheme was further extended to quadruped locomotion [39].

Human navigation: Reynolds [36] introduced reactive behaviors to simulate groups

of simple creatures such as flocks of birds, herds of land animals, and schools of fishes.

Terzopoulos et al. [40] simulated reactive behaviors of artificial fishes with synthetic

visions. Noser et al. [30] presented a local navigation model for human-like characters

using synthetic visions. They also simulated a human memory model for avoiding

obstacles [31]. Kuffner and Latombe [24] addressed a similar problem for dynamic

environments. Reich et al. [35] suggested a real-time model for human navigation in

an uneven terrain. They adopted simulated sensors to detect geometric features such

as obstacles. Bandi and Thalmann [2] discretized a synthetic environment into a 3D

uniform grid to search paths for autonomous characters.

Probabilistic path planning: Barraquand and Latombe [4] elaborated a randomized

path planning technique, that is originally invented for escaping local minima in a po-

tential field. Thereafter, Kavraki and Latombe [17] and Overmars and Sv̌estka [32]

independently and jointly proposed similar methods [19] that randomly sample the

configuration space, as preprocessing, to construct a roadmap and then search the

roadmap for a path during the planning stage. These methods have demonstrated good

performance empirically in difficult problems, such as navigating car-like robots with

non-holonomic constraints and robots with many degrees of freedom. In recent years,

theoretical foundations for such empirical successes have been established in some re-

stricted cases [3, 16, 18]. Koga et al. [22] combined randomized path planning and

inverse kinematics to automatically generate animation for human arm manipulation.

Kalisiak and van de Panne [15] presented a grasp-based motion planning algorithm

in a constrained 2D environment with designated handholds and footholds. Kindel et

al. [20] developed a path planner for a robot with dynamic constraints and verified its

effectiveness both in real and simulated environments.

Motion editing: There have been a variety of efforts to develop motion editing tools.

Bruderlin and Willams [7] adopted signal processing techniques to manipulate ani-

mated motions. They introduced displacement mapping to alter a canned motion clip

while preserving its detailed characteristics. Witkin and Popović [43] proposed a mo-
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tion warping technique for the same purpose. Unuma et al. [41] used Fourier analysis

techniques to interpolate and extrapolate motion data in the frequency domain. Lam-

ouret and van de Panne [25] discussed a variety of issues in reusing motion clips.

Rose et al. [37] generated seamless transitions between motion clips using spacetime

constraints [8]. Gleicher [10] simplified the spacetime problem for motion retarget-

ting, that is, adapting a pre-existing motion of a character for another character of the

same structure and different size. Employing an optimization technique, he was able

to achieve an interactive performance for motion editing. To accelerate this approach,

Lee and Shin [27] presented a hierarchical displacement mapping technique based on

the multilevel B-spline approximation. They also gave a fast inverse kinematics solver

adopting the notion of an elbow circle given by Korein and Badler [23].

1.3 Overview

Given start and goal positions in a virtual environment, our objective is to find a se-

quence of motions of a biped figure to move from the start to the goal. Conven-

tional motion planning techniques [14, 26] can hardly achieve a realistic animation

of a human-like figure. On the other hand, motion editing techniques [10, 27, 37]

are not equipped with a high-level planning capability to yield a desired motion. To

rapidly plan convincing motions of the human-like character with high-level directives,

we combine two novel ideas, that is, probabilistic path planning [19] and hierarchical

motion fitting [27]. Our scheme consists of the following three steps: roadmap con-

struction, roadmap search, and motion generation. We briefly describe each of them to

give an overall view on our scheme.

Roadmap construction: Given a virtual environment, we randomly sample valid

configurations of a biped figure to construct a roadmap [19]. For efficiency, we rep-

resent the configuration of the figure with that of its stance foot, called as a foothold,

rather than posture itself. The roadmap can be modeled as a directed graph whose node

represents a valid sample of the configuration space, that is, the position and orienta-

tion of the stance foot. A pair of nodes are connected by an edge if the biped figure can

move from a node to the other with a prescribed motion while preserving its liveness.

Roadmap search: Once a roadmap is constructed, the path planning problem is re-

duced to a constrained minimum-cost path problem on a directed graph, that is, finding
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a minimum-cost path such that each pair of consecutive edges in the path share a node

in a posture transition graph [1]. A node of the posture transition graph represents a

posture, and two nodes are connected by a directed edge representing a motion clip.

After augmenting the roadmap with the posture transition graph for ensuring the con-

nectivity between motion clips, we adopt a minimum-cost path algorithm [9] to search

for two primary pieces of information: a sequence of input motion clips and that of

target footprints .

Motion generation: Our last task is to generate realistic locomotion from the se-

quence of input motion clips and that of target footprints obtained from the roadmap.

We have acquired an input motion sequence in roadmap search by simply stitching

the motion clips attached to the edges along the minimum-cost path. Therefore, the

footprints of the input motion sequence may yield some deviations from the target

footprints transformed to coincide with the footholds at the nodes on the path. We ad-

dress this problem in two steps: First, a target motion is estimated to provide a better

initial guess. Then, the hierarchical displacement mapping scheme [27] is employed

with this initial guess to retarget the input motion for the target footprints.

The remainder of the paper is organized as follows. After presenting our randomized

scheme to construct a roadmap in Section 2, we describe how we can search a sequence

of input motion clips and that of target footprints from the roadmap in Section 3. In

Section 4, we present how to generate a desired motion from the results of roadmap

search. Section 5 demonstrates experimental results of our planning scheme. In Sec-

tion 6, we discuss several issues on our scheme. Finally, we conclude this paper and

describe future work in Section 7.

2 Roadmap Construction

2.1 Node Generation and Connection

A foothold f = (p,q), represents the configuration of a stance foot, where p ∈ R
3 and

q ∈ S
3 denote its position and orientation, respectively. However, we will parameterize

the foothold c-space (configuration space) with the 2D position (u, v) of the stance foot

and its resting yaw θ on the ground to reduce the dimension of the space. Provided with

(u, v, θ), we can always recover the full configuration f = (p,q) by extracting the
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height and the resting pitch and roll from environment geometry. Using parameters, u,

v, and θ, we randomly sample footholds to generate the nodes of a roadmap under the

assumption that each parameter value has a uniform distribution over an interval. After

sampling a foothold, we test whether it is valid, that is, a figure can safely put a foot

on the ground with this configuration. A prescribed number of valid configurations are

sampled in this way and retained in the roadmap. In our experiments, a few thousand

samples have given high fidelity in planning a path with the roadmap.

Each newly generated node is added to the roadmap using a fast local planner, that

will be described in Section 2.2. As the number of nodes in the roadmap increases, the

time to connect a new node with the others grows prohibitively. Observing that a node

is usually not connected with those nodes that are far apart, we choose the K-closest

neighbors to the new node as the candidates for connection for a given positive integer

K. A successful connection of the new node to or from one of the K-closest nodes

yields a directed edge between them. From a result in computational geometry [33],

finding the K-closest neighbors requires a non-trivial amount of computation for a

large number of points. In our current implementation, we exploit spatial partitioning

techniques to speed up the process of finding the K-closest nodes. Specifically, we

keep the randomly-generated nodes in a spatial data structure such as uniform cells.

For each cell, we choose one of its nodes as their representative. Given a new node,

we first sort the cells in the increasing order of distances from their representatives to

the new node, and then choose K nodes, while visiting the cells in the same order, to

approximate the K-closest neighbors.

2.2 Local Planner

To connect a pair of given nodes in the roadmap, the local planner checks whether they

can be connected with a motion clip, that is, whether or not the motion clip can be trans-

formed, within a specified tolerance, to have its first and last footprints coincided with

the footholds at the two nodes, respectively (See Figure 1). Successful transformation

gives a sequence of footprints. The connection between the two nodes is discarded, if

any footprint of this sequence is invalid, that is, not safely placed on the ground. When

every footprint is valid, the nodes are connected with the edge unless the transformed

motion causes any collision with obstacles. Collision detection can be performed with

efficient methods in [11, 28, 29].

From now, we focus on how to transform the footprints. Given a motion clip M ,
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the footprint sequence f(M) is obtained by interactively marking the moments of heel-

strike and toe-off. A stance foot is held on the ground from its heel-strike time to its toe-

off time to give a footprint. Suppose that M consists of n frames and has m footprints.

Letting the j-th stance foot be on the ground for a time interval, [tj −∆j , tj + ∆j ], we

specify f(M) as follows:

f(M) = {fj |fj = (pj ,qj , tj , ∆j), 1 ≤ j ≤ m}. (1)

Here, fj represents the j-th footprint, pj ∈ R
3 and qj ∈ S

3 denote its position and

orientation, respectively, tj is the middle of its heel-strike and toe-off times, and 2∆j

is its duration of stance. Moreover, tj ≤ tj+1 and 1 ≤ tj ±∆j ≤ n for all j.

Suppose that we attempt to connect two nodes of the roadmap with the motion M .

Let fs = (ps,qs) and fe = (pe,qe) be their foothold configurations, respectively. To

transform the footprint sequence f(M), we first adjust the positions of the footprints

and then their orientations (See Figure 1).

To adjust position differences, we initially translate pj for all j to make the posi-

tion p1 of the first footprint coincide with ps. Then, to place the position pm of the

last footprint as close to pe as possible, we rotate pj for all j, at first, about the axis

perpendicular to the ground plane, and then, about the axis lying on the same plane

and perpendicular to the direction vector pe − ps. Here, both axes pass through p1.

For later orientation adjustment, we update the footprint orientation qj , 1 ≤ j ≤ m,

with those rotations. In general, pm does not lie exactly on pe with those rotations.

However, they are lying on the line connecting ps and pe. Scaling pj for all j by the

factor

s =
‖ps − pe‖

‖pm − p1‖
, (2)

we can make pm lie on pe. Accordingly, we scale the parameters of locomotion such

as step length, velocity, turning angle and so on.

Now, we adjust orientation differences. Employing the logarithmic map log(·) and

exponential map exp(·) of the quaternion algebra [38], we propagate the orientation

differences at the two nodes, log(q−1

1 qs) and log(q−1
m qe), to the intermediate foot-

prints between the first and the last. To obtain a new orientation q′j of the j-th foot-

print, we linearly interpolate the differences with the chord length parameterization of

pj , 1 ≤ j ≤ m. That is,

q′j = qj exp((1− tj) · log(q−1

1 qs) + tj · log(q−1
m qe)), (3)
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Figure 1: Footprint transformation

where tj =
∑j

k=2
‖pk−pk−1‖∑

m
k=2

‖pk−pk−1‖
for all j.

To preserve the quality of the motion clip M , we need to check whether the last two

non-rigid transformations can be done within given thresholds. For the position differ-

ence, we use the ratio |1− s| to measure how much the length of the chord from p1 to

pm is stretched or contracted, where s is given by Equation (2). To measure the orienta-

tion difference, we employ the tight upper bound on the angular difference of rotation in

the interpolation given in Equation (3), that is, max(‖ log(q−1

1 qs)‖, ‖ log(q−1
m qe)‖).

If both the position and orientation differences are within their threshold values, we

achieve a successful transformation.

2.3 Cost Function

Each directed edge of the roadmap has its cost that measures the efforts for a character

to move from the head node to the tail node with the tagged motion clip. Searching the

roadmap for a path is guided by the edge costs. With the well-designed edge costs, an

intended sequence of motions can be obtained by finding the minimum-cost path from

the start node to the goal in the roadmap. Our cost function of each edge incorporates a

set of factors that measure the motion clip in diverse perspectives. The cost of an edge
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can be computed from those factors.

One of the most intuitive and important factors is the distance for a character to

travel. For obtaining the distance cp
d to travel with a motion clip, we sum up the dis-

tances between every pair of adjacent footprints, that is, cp
d =

∑m

j=2
‖pj − pj−1‖,

where pj , 1 ≤ j ≤ m, is the position of the j-th footprint. A somewhat similar and

slightly different factor ct
d is the number of frames of a motion clip. ct

d is a measure

in the time domain whereas cp
d is that in the space domain. Thus, we incorporate both

terms in a single function,

cd = cp
d + wb · c

t
d, (4)

with a user-provided weighting coefficient wb.

In Section 2.2, we have employed the local planner to adapt a live-captured motion

to the footholds at a pair of nodes of each edge. The adaptation is required to adjust

both the position and orientation differences between the footholds and the pair of

extreme footprints of the motion clip. These differences indicate how much the motion

clip is degraded to satisfy the foothold constraints. In order to preserve the liveness

of the original motion clips, we need to minimize their adaptation while satisfying the

constraints. Let cp
r and co

r be the position and orientation differences, respectively. To

measure the degree of adaptation, we use a weighted sum of the both differences,

cr = cp
r + wm · co

r, (5)

where wm is a weighting factor addressing the metric difference between the position

and the orientation.

Besides distance and adaptation costs, we may also consider user’s preference to

certain motion clips. For example, “walking” motions are more desirable than “broad

jump” in a normal case. To incorporate such preference, we consider a preference cost

cp that is reciprocal to user’s preference. Then, the final cost function for an edge is

defined as a weighted sum of the former two costs multiplied by the last cost:

c = cp · (wd · cd + wr · cr), (6)

where wd and wr are user-controllable weighting factors. In addition to the above

terms, other factors such as obstacles along the edge may also be incorporated into the

cost function.
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2.4 Enhancement

If a sufficiently large number of nodes were generated, then the roadmap would uni-

formly cover almost entire regions of the c-space. However, with a moderate number

of nodes, uniform sampling does not guarantee that the roadmap is connected well in

“difficult” regions of the c-space such as narrow passages [17, 19]. We adopt a heuris-

tic method [17] to facilitate better interconnection. For each node v belonging to the

node set V of the roadmap, a probability density function is defined by

P (v|V ) =
1

iv + ov + 1
/

∑

u∈V

1

iu + ou + 1
, (7)

where iv is the number of edges incident to v, and ov is the number of edges inci-

dent from v. The underlying idea of this function is based on the fact that a node

interconnected poorly lies in a difficult region with a high probability and thus needs

more samples for better connectivity. We choose a node v from the node set V of the

roadmap with probability P (v|V ) to introduce an additional node near the node v. The

number of additional nodes between one third and one half of that of initial nodes is

known empirically to give a good performance [16, 17, 19].

3 Roadmap Search

In this section, we describe how to search the roadmap for a minimum-cost path, that

gives a sequence of desired motions and that of target footprints, provided with start

and goal configurations. We will further refine the target footprints using the local

planner presented in Section 2.2.

Before moving on to roadmap search, we describe a posture transition graph [1]

in detail since it plays a crucial role in ensuring connectivity between motion clips. A

node of the posture transition graph represents a valid posture of a biped figure, and

an edge represents a motion clip. If the motion clip of an edge can be connected to

that of another edge, then the head node of the former edge coincides with the tail of

the latter (See Figure 2(a)). In addition, each edge is tagged with a footprint sequence

obtained from the corresponding motion clip. We may employ techniques [27, 37] for

generating the transitions among motion clips to build the posture transition graph.
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Figure 2: Augmented roadmap with posture transition graph

3.1 Path Finding

Given two foothold, fx and fy, our objective here is to find a sequence of input motion

clips and the target footprints, which can be done in two steps: We first add two nodes

x and y corresponding to fx and fy to the roadmap and then search the roadmap for a

minimum-cost path between x and y. When any of those two nodes is not connected

to the roadmap, we employ a random walk to eventually connect it to the roadmap [4].

Searching the roadmap needs special care since motion clips are not guaranteed to

stitch with each other. Suppose that we have traversed the roadmap to arrive at the

node v via an edge e incident to v. To go further from v, we take another edge e′ that

is incident from the node v and whose corresponding motion clip can be stitched with

that of the edge e. At each node v encountered, we need to memorize the one-level
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Figure 3: A sequence of footprints is repeatedly refined. The number of iterations is 0
(left), 4 (middle), and 8 (right).

history, that is, the incident edge to the node v used for entering. We also need to refer

to the posture transition graph to check if the motion tagged on e can make transition to

that on e′ via a common posture. Therefore, we cannot directly apply a minimum-cost

path algorithm [9].

Let G(V, E) be the directed graph representing our roadmap. To avoid both mem-

orizing the history and referring to the posture transition graph during path search, we

transform G(V, E) into a new directed graph G′(V ′, E′) so that any connected path

of G′ yields a feasible motion sequence. Suppose that the posture transition graph has

k nodes, ui, 1 ≤ i ≤ k, each representing a posture. Then, using the nodes of the

posture transition graph, we split every node v of G(V, E) to make a set of k nodes,

{(v, ui)|i = 1, 2, · · · , k} of G′. Each node (v, ui) possesses both the posture at the

node ui of the posture transition graph and the foothold at the node v of the roadmap

G (See Figure 2). A pair of nodes, (v1, ui) and (v2, uj) of G′ admit a directed edge

from (v1, ui) to (v2, uj) if and only if the motion tagged on the edge from v1 to v2

in G is also tagged on the edge from ui to uj in the posture transition graph. Finally,

we remove the nodes from G′ that are not connected with any other nodes. Since each

node of G′ is associated with a posture as well as a foothold, any pair of edges in G′

that are incident to and from a node guarantee that the motion clip tagged on the edge

incident to the node can make transition to that on the other, and thus any connected

path in G′ provides a feasible motion sequence. Consequently, we can directly apply

the minimum-cost path algorithm to the graph G′. Since G′ has at most k|V | nodes

and |E| edges, we can find a sequence of motion clips and their target footprints in

O(k|V | log k|V |+ |E|) time to move from a start node to a goal.

If path planning fails frequently, we sample the c-space more densely to add new
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nodes. The roadmap can be expanded incrementally on the fly with our local planner.

When a small portion of the environment changes, new nodes can be sampled from the

same portion of the new environment while removing those nodes lying on that portion

of the old environment.

3.2 Footprint Refining

A target footprint sequence has been obtained from the motion clips tagged on the

edges of the path in the roadmap. As explained in Section 2.2, the footprint sequence

may differ from the original sequence in the motion clips within a specified tolerance.

This difference may vary from edge to edge. To smooth the difference along the path,

we give a local refining scheme that adjusts each footprint successively by referring to

the neighboring footprints of the original, while ensuring the validity of the adjusted

footprints. Applying the local refining scheme to every footprint in the sequence back

and forth repeatedly along the path, we propagate the difference rather uniformly (See

Figure 3).

We adopt the local planner developed in Section 2.2 for smoothing the difference.
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For each footprint f in the target footprint sequence, we take its corresponding footprint

fm and its adjacent footprints in the original motion clip (See Figure 4). To apply

the local planner to fm together with its two neighboring footprints, we conceptually

interpret the two footprints adjacent to the footprint f as the footholds representing two

hypothetical nodes, v1 and v2 of the roadmap, respectively. The planner adjusts the

footprint sequence composed of the three footprints, that is, the footprint fm and its

two neighbors, with respect to the footholds in the hypothetical nodes v1 and v2 to

obtain a new footprint f ′.

Instead of simply replacing the original footprint f with the new one f ′, we linearly

interpolate them with a given weighting factor. If the interpolated configuration is not

valid, we lower the weighting factor to obtain a new candidate that is closer to the

original footprint f . This process is repeated a few times to obtain a valid one. If

we fail to find a valid one after a given number of iterations, we take f itself as the

footprint.

4 Motion Generation

With the sequence of input motion clips and that of target footprints available, we fi-

nally generate a biped locomotion from the start position to the goal in this section. In-

terpreting each of those footprints as a variational constraint over a time interval [10],

we can formulate this task as a motion retargetting problem [10, 27, 37]. For this

problem, it is well-known that the initial body trajectory is very important for the con-

vergence of numerical optimization and the quality of the result. The body trajectory is

usually represented by the position and orientation of the root segment. By analyzing

the input motion sequence and the target footprints, we estimate the body trajectory of

the target motion. Together with the joint angles of the motion clips, this yields an ini-

tial guess for the target motion at every frame. Using the initial guess, we can employ

the hierarchical motion fitting scheme [27] to retarget the input motion sequence for

the footprints.

Since motion retargettting is well-described in [10, 27], we will concentrate on how

to estimate the body trajectory of the target motion for deriving the initial guess. For

the input motion sequence A, let f(A) and b(A) denote its footprint sequence and body

trajectory, respectively. For the unknown target motion sequence B, f(B) and b(B)

can be defined similarly. Here, our objective is to estimate the target body trajectory

b(B). B is implicitly specified by f(B) together with A. Suppose that A and f(A)
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Figure 5: Body trajectory estimation

consist of n frames and m footprints, respectively. Tracing the posture of the root

segment in every motion clip in sequence, we can easily acquire b(A) for all frames of

A.

In order to estimate b(B), we exploit a relationship between b(A) and f(A) (See

Figure 5). We first derive a reference trajectory r(A) of the motion sequence A from

its footprints f(A), and then compute its displacement d(A) to b(A),

d(A) = b(A)	 r(A), (8)

where r(A) and the operator 	 will be defined later. Notice that each of b(A), d(A),

and r(A) consists of vector and orientation components. Assuming that A and B are

similar within a small tolerance, we have

b(B) = d(B)⊕ r(B) ≈ d(A)⊕ r(B) (9)

= (b(A)	 r(A)) ⊕ r(B).

With b(A) directly picked up from the original motion clips, we need to com-

pute reference trajectories r(A) and r(B) to determine b(B). Provided with f(A) =
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{fj |fj = (pj ,qj , tj , ∆j), 1 ≤ j ≤ m}, the body center (the center of the root segment)

is expected to lie above the “mid-posture” of every pair of consecutive footprints. Let

the mid-posture of fj and fj+1 be

(p̄j , q̄j) = (
1

2
(pj + pj+1),qj(q

−1

j qj+1)
1
2 ) (10)

at t̄j = b
tj+tj+1

2
c, 1 ≤ j < m. Interpolating those mid-postures piecewisely for each

adjacent pair in sequence, we obtain a continuous reference trajectory for A over the

interval [t̄1, t̄m−1] [38]. We resample the trajectory at every frame in [t̄1, t̄m−1] to have

r(A) = {(pr
i ,q

r
i ) ∈ R

3 × S
3|t̄1 ≤ i ≤ t̄m−1}. r(B) can also be obtained in the same

way from the target footprint sequence f(B).

We now compute the displacement map d(A) = b(A) 	 r(A). An ordered pair

(pr
i ,q

r
i ), t̄1 ≤ i ≤ t̄m−1, of position and orientation components of r(A) specifies

a rigid transformation that maps a point u in R
3 to a point u′ in R

3, that is, u′ =

qr
i u(qr

i )
−1 + pr

i . Here, the vector (x, y, z) = u ∈ R
3 is considered as a purely

imaginary quaternion (0, x, y, z) ∈ S
3. Given b(A) = {(pb

i ,q
b
i ) ∈ R

3 × S
3|1 ≤ i ≤

n} and r(A) = {(pr
i ,q

r
i ) ∈ R

3 × S
3|t̄1 ≤ i ≤ t̄m−1}, we define their displacement

map d(A) = {(ui,vi) ∈ R
3 × R

3|t̄1 ≤ i ≤ t̄m−1} measured in the local coordinate

system for r(A) as follows:

d(A) = b(A)	 r(A) (11)

= {(pb
i ,q

b
i )	 (pr

i ,q
r
i )|t̄1 ≤ i ≤ t̄m−1}

= {((qr
i )
−1(pb

i − pr
i )q

r
i , log((qr

i )
−1qb

i ))|t̄1 ≤ i ≤ t̄m−1}.

Finally, letting r(B) = {(pi,qi)|t̄1 ≤ i ≤ t̄m−1}, we obtain the body trajectory

b(B):

b(B) = d(A)⊕ r(B) (12)

= {(ui, vi)⊕ (pi,qi)|t̄1 ≤ i ≤ t̄m−1}

= {(qiuiq
−1

i + pi,qi exp(vi))|t̄1 ≤ i ≤ t̄m−1}.

b(B) is defined over frames from t̄1 to t̄m−1. To extend b(B) over all frames, we take

the portion of b(A) between 1 and t̄1, and stitch it with b(B) such that its position and

orientation coincide with those of b(B) at t̄1 through a rigid transformation. We can

obtain b(B) from t̄m−1 to n symmetrically.
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5 Experimental Results

Our planning scheme is implemented in C++ as an Alias|Wavefront MAYATM plug-

in on top of the Microsoft WindowsTM 2000. Experiments are performed on an Intel

PentiumR PC (PIII 800 MHz processor and 512 MB memory) with commercially avail-

able motion clips. We use a human model of 43 DOFs: 6 DOFs for the pelvis position

and orientation, 3 DOFs for the spine, 7 DOFs for each limb, and 3 DOFs for each of

the neck and head. The motion clips are sampled at the rate of 24 frames per second.

Our first experiment is for planning a walking motion of a human-like character.

Figure 6 exhibits the resulting motion on a terrain in an island, in which foot planting

is not allowed at any point in the sea. We use the posture transition graph with a

set of live-captured motion clips for walking as depicted in Figure 2(a). The terrain

is represented as a NURBS surface of which control points are placed on a regular

grid, and their y-coordinates (heights) are perturbed above or below the sea level. By

setting the sea level to zero, a valid footprint has a non-negative height. For collision

avoidance, we use a heuristic method that detects a collision when the height of the

swing foot lies below the environment at any frame. The flow of our planning scheme

is visualized in the accompanying video clips.

The next experiment exhibits the capability of our planning scheme to cope with

a difficult environment by using various motions. As shown in Figure 7, the terrain

has complex features such as a crevice and a small stream. Motions such as “broad

jumping” and “running” are added to the motion repertoire. The running motion is

given a preference over the others when a local geometry has a small height variation.

We can observe that such motions are properly used for overcoming the environment.

Our final experiment is for an environment with obstacles. As illustrated in Fig-

ure 8, the environment is a room with several pieces of furniture as obstacles. For

collision detection, we employ a similar method in [11]. A pair of nodes are connected

with an edge representing a motion clip when the conservative bounding volume swept

by the motion clip does not intersect with the rectangular bounding box of any obstacle.

Table 1 summarizes the input data and the results of our experiments. For each

example, our path planner performs three major steps: roadmap construction, roamap

search, and motion generation. The running time of the rodmap search shows its de-

pendency on the number of nodes and that of edges in the roadmap. In each of the

examples, the roadmap construction time dominates the others as expected. The con-

struction time is a function of motion clips and environment geometry. The motion
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Figure 6: Simple terrain

Figure 7: Complex terrain
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Table 1: Performance data. N and M are the numbers of initial nodes sampled and the
additional nodes for enhancement, respectively. E is the number of edges connected.
Timing data give CPU time in seconds.

Fig. 6 Fig. 7 Fig. 8
# of motion clips 13 29 13
roadmap
construc-
tion

N (# of initial nodes) 2000 3000 2000
M (# of additional nodes) 1000 1500 1000
K (# of candidates) 100 100 100
E (# of edges) 88703 266419 87617
# of edges/node 28.81 59.20 29.21
construction time 34.250 99.050 38.880

roadmap
search

path finding time 0.020 0.250 0.060
# of motion clips on a path 5 28 14
# of iterations in refining 4 4 4
footprint refining time 0.020 0.120 0.080

motion
genera-
tion

# of frames 197 1139 467
initial estimation time 0.010 0.020 0.010
retargetting time 0.090 0.670 0.250
retargetting time/frame 0.001 0.001 0.001

total time (excluding preprocessing) 0.140 1.060 0.400
average time/frame (excluding preprocessing) 0.001 0.001 0.001

Figure 8: Room with furniture
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generation time roughly depends on the number of frames generated. After construct-

ing the roadmap, we can produce more than 1000 frames per second in all experiments.

Since the roadmap construction can be considered as preprocessing, our motion plan-

ning scheme exhibits an interactive performance in our experiments.

6 Discussion

Potential field planner vs. Roadmap planner: There have been two major streams

of randomized techniques for path planning: randomized path planning with potential

fields [4, 15, 22] and probabilistic path planning with roadmaps [3, 16, 17, 18, 19, 32].

A randomized path planning scheme employs a potential field to guide the search for

a path to the goal while avoiding the obstacles. To escape from a local minimum in

the potential field, this scheme is usually equipped with random walks. A probabilis-

tic path planning scheme constructs a roadmap by random sampling to guide the path

search. In the probabilistic scheme, most heavy computations are done in the prepro-

cessing phase, that is, roadmap construction. Once a roadmap is constructed, we can

find a path between any pair of configurations very efficiently. Our approach is partic-

ularly effective to perform repetitive point-to-point locomotion generations in the same

environment.

Postures vs. Footholds: A reasonable human model in computer graphics has about

40 degrees of freedom. Planning motions with such high degrees of freedom directly in

the configuration space is still computationally demanding even with probabilistic mo-

tion planning techniques. Instead of sampling the c-space of postures, we sample that

of footholds while accessing motion clips via edges incident to and from nodes rep-

resenting footholds. Although this makes roadmap search a little complicated, the di-

mension of the c-space is reduced dramatically, and thus a moderate number of samples

reflects well the connectivity of the c-space. This enables us to search a minimum-cost

path at an interactive performance. Alternatively, one may prefer the pelvis configu-

ration for the same purpose. Unlike end-effectors such as feet and hands, the pelvis

cannot be used for interaction with external environments. Thus, the footholds make it

easier to plan motions such as jumping over crevice and walking over stepping stones.

Regular sampling vs. Random sampling: For a c-space of low dimension such

as our foothold space, regular sampling is a possible choice to construct a roadmap.
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In regular sampling, all grid points in the free c-space are sampled as the nodes to

guarantee their uniform coverage of the space. However, for an environment with

dense obstacles, a grid of high resolution is required to ensure a good connectivity of

the roadmap. In this case, random sampling yields a well-connected roadmap with a

moderate number of samples due to the heuristic scheme for additional sampling [3, 16,

18] as given in Section 2.4. Moreover, compared to regular sampling, random sampling

requires much less samples to achieve high fidelity in the sense that the roadmap covers

uniformly almost entire regions of the c-space [3, 16, 18].

7 Conclusions

Animation scripts or interactive systems frequently require high-level directives for

locomotion of a character on a virtual environment. To facilitate rapid motion proto-

typing and task-level motion generation for interactive applications, this paper presents

a new scheme for planning a natural-looking motion, for a human-like biped figure to

move from a given start position to a goal with a set of prescribed motion clips. Com-

bining probabilistic path planning [19] and hierarchical motion fitting [27], we find a

sequence of motion clips and that of target footprints from the start to the goal, and

then retarget the motion sequence to follow the target footprint sequence. Given a rich

set of motion clips, our scheme enables a human-like figure to move on an uneven ter-

rain with a variety of motions, such as running in a plain region, walking over stepping

stones, and jumping over a crevice.

Currently, our motion planner produces locomotion guided by the footholds at the

nodes of the roadmap. We may use other features such as “handholds [15]” as well

to produce different kinds of motions, for example, crossing a river with a rope and

climbing a rock, sitting on a chair, and so on.
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