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Modal Warping: Real-Time Simulation of
Large Rotational Deformation and Manipulation

Min Gyu Choi and Hyeong-Seok Ko

Abstract—This paper proposes a real-time simulation a continuum model, it is necessary to choose the mea-
technique for large deformations. Green’s nonlinear strain - sure of strain that quantifies deformation. Green’s strain
tensor accurately models large deformations; however, tensor, which consists of linear terms and a nonlinear
time stepping of the resulting nonlinear system can be oy has been a common choice for large deformations.
computationally expensive. Modal analysis based on aUnfortunately, time stepping of the resulting nonlinear

linear strain tensor has been shown to be suitable for t b tati I . h ing it
real-time simulation, but is accurate only for moderately system can be computationally expensive, hampering Its

small deformations. In the present work, we identify the Practical use in animation production.
rotational component of an infinitesimal deformation, and ~ The computational load can be reduced remarkably by

extend traditional linear modal analysis to track that employingmodal analysig19] based on a linear strain

component. We then develop a procedure to integrate tensor. In this technique, a set of deformation modes
the small rotations occurring at the nodal points. An  — a small number of principal shapes that can span free
interesting feature of our formulation is that it can yijpration of the elastic model — is identified and precom-
imp[ement both position and orientatiqn constraints in a puted. Then, the problem of simulating deformation is
straightforward manner. These constraints can be used to transformed to that of finding the weights of the modes,

interactively manipulate the shape of a deformable solid . . L o .
by dragging/twisting a set of nodes. Experiments show which results in a significant reduction in computational

that the proposed technique runs in real-time even for a COMPplexity. This technique can also synthesize geomet-
complex model, and that it can simulate large bending rically complex deformations with negligible main CPU
and/or twisting deformations with acceptable realism. costs on programmable graphics hardware [10].
However, modal analysis can produce quite unnatural
results when applied to bending or twisting deformations
of relatively large magnitudes. In particular, the volume
of the deformed shape can increase unrealistically, as
|. INTRODUCTION shown in Fig. 4. These unnatural results are due to the

. . omission of the nonlinear term, which is not negligible
VERYTHING in this world deforms. In many . - 919
. . for such deformations. In this paper, we propose a new
objects or creatures, deformation is such a co

- . . . . P?'(chnique that overcomes the above limitations of linear
spicuous characteristic that their synthetic versions loQ . :
modal analysis. As a result, the proposed technique

quite unnatural if the deformation process is not pro%-

Index Terms—Physically Based Modeling, Physically
Based Animation, Deformation, Modal Analysis

generates visually plausible shapes of elastodynamic

erly simulated. Therefore, modeling of deformation ig_,. . . . .
an imoortant aspect of computer animation roductio%onds undergoing large rotational deformations, while
mp P Pt proc étaining its computational stability and speed. Also, our
This paper presents a physically-based technique for ' ) . . .

o : ) ormulation provides a new capability for orientation
dynamic simulation of deformable solids, attached tg : : . :
. . L ) constraints, which has not been addressed in previous
rigid supports and excited by their rigid motions and/ar, . o : ) .
i . studies. The use of position/orientation constraints can
external forces such as gravity. The proposed techmqéje

makes a sianificant imorovement in simulation Spee réate interesting animations (Section VI) which would
. . g. : P . - P Have been difficult if orientation constraints were not
while maintaining the realism to a sufficient level, even__ .

) provided.
for large deformations.

) . _ .,_The innovative aspect of our technique lies in the
Itis a well-established approach to model elastic SO|I9\?ay of handling rotational parts of deformation in the

as c_onﬁmuums ?ni so:ve th?r gc:;l/e(rjlnlngvﬁquatlgnst_%bdal analysis framework. To exploit the framework of
merically using finite element methods. en adopinghear modal analysis, we omit the nonlinear term during

The authors are at Graphics & Media Lab., School of Electrical Ertlhe initial setup, which corresponds to precomputing

gineering and Computer Science, Seoul National University, 151-7H_ie mo_dal _Vibration modes at the rest state. When the
Gwanak-gu, Seoul, Korea. http://graphics.snu.ag-kmgchoj~ko}  simulation is run, however, we keep track of the local
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rotations that occur during the deformation, based on tbembined modal analysis with rigid body simulation
infinitesimal rotation tensor. Then, at each time step we deal with free-floating deformable objects. Although
warp the precomputed modal basis in accordance witfodal analysis significantly accelerates the simulation,
the local rotations of the mesh nodes. The rest of titegenerates noticeable artifacts when applied to large
method is basically the same as in linear modal analysieformations due to the linearization. Here we propose a
The above book-keeping operations — tracking locedchnique that eliminates the linearization artifacts while
rotations and warping the modal basis — require onlyrataining the efficiency of the modal analysis.

small amount of extra computation. Therefore, as in [10], The linearization artifacts observed in simulations
our method can simulate dynamic deformations in reddased on linear modal analysis arise in large part because
time by employing programmable graphics hardware, biriear modal analysis does not account for rotational

with an extended coverage of deformations. deformations. Terzopoulos and Witkin [25] introduced
a frame of reference and modeled the deformation rel-
Il. RELATED WORK ative to that reference frame. Since simulations using

Since the pioneering work of Terzopoulos et al. [24ihe reference frame capture the rotational part of the
much effort has been devoted to simulating the motion déformation, they can handle large rotational motions of
deformable objects. Past studies in this area have had tf&formable solids. However, large deformations within
central aims: to speed up the simulation and/or incredbe solid are also susceptible to the linearization artifact.
the realism of the result. A comprehensive survey of thi® realistically animate articulated deformable charac-
subject can be found in computer graphics literature [8rs, Capell et al. [2] developed a method in which the
and mechanics literature [1], [26]. character is first divided into overlapping regions, then

The speed and realism of simulations, which usualgach region is simulated separately, and finally the results
trade off each other, are heavily dependent on hawe blended. For nonlinear quasi-static deformations of
the nonlinearities are handled. If realism is importangsticulated characters, Kry et al. [12] introduced a modal
Green’s quadratic strain tensor could be used, whidisplacement model equipped with a continuously artic-
produces realistic results even for large deformationgated coordinate system.

However, time stepping of the resulting nonlinear systemTo address large relative rotational deformations
can be computationally expensive. Several methods havighin a single object, Mller et al. [14] proposed the

been proposed to reduce the computational load sifffness warping method that tracks the rotation of each
this approach. Lumped mass approximation diagonalizesde and warps the stiffness matrix. Our method is
the mass matrix so that its inverse can be computsihilar to their approach in that rotations are handled
efficiently. Further reduction of the computation time caseparately to reduce the linearization artifacts. The in-
be achieved by employing adaptive methods based toinsic difference is that, whereas the stiffness warping
a multi-grid solver [23], non-nested overlapping layenmethod is formulated in the original space, our method is
of unstructured meshes [3], subdivision of the contrédrmulated in the modal space. This results in a signifi-
lattice [2], or refinement of basis functions [7]. Howevegant speed up in both simulation and visualization by (a)
the speed-up achieved by those methods is limiteshlving decoupled, reduced system of linear equations,
because they must still deal with the inherent problerasd (b) utilizing programmable graphics hardware for
resulting from the nonlinearities. vertex updates of large models. However, unlike the

The computation time can be greatly reduced korotational methods [4], [5], [15] that employ element-
adopting the modal analysis of linear elastodynamiasjse rotation, both Niller et al.’'s work [14] and our work
which omits the nonlinear term. Since Pentland arade based on node-wise rotation of the stiffness matrix,
Williams [19] first introduced this technique to the comthus can produce a spurious ghost force when applied
puter graphics community, it has been used for modelitg a free-floating deformable object. Currently, our work
the dynamic movements of trees in turbulent wind [22is focused on a deformable object attached to a rigid
and for generating sounds corresponding to the behavéoipport, thus the ghost force effects are suppressed by
of deformable objects [18]. In particular, James artfie constraint force.

Pai [10] showed that the deformation of human skin Recently, James and Fatahalian [9] proposed data-
excited by rigid body motion can be generated in reariven tabulation of the state space dynamics and di-
time on programmable graphics hardware. They alszensional model reduction of the deformed shapes to
proposed an output-sensitive technique for collision dsimulate large deformations at an interactive speed with
tections among reduced deformable models [11]. Hausgsually realistic results. Because the tabulation could
et al. [8] addressed the manipulation constraints, andt be performed for all possible system responses, they
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confined user interactions to certain types of movements.

They reported that the precomputation for the dinosaur =
model shown in Fig. 10 took about 30 hours. In compar- J
ison, our method is formulated by adding simple exten- o )

sions to linear modal analysis. As a consequence, it does
not entail long precomputation times, nor does it restrict
the types of user interactions. However, self-collisions
and global scene illumination cannot be precomputedgfy. 1. Kinematics of infinitesimal deformation.
our method, which was possible in [9].

Undeformed State Deformed State

Ill. ROTATIONAL PART IN A SMALL DEFORMATION g differential relation that gives the position to which
The nonlinear term in the strain tensor is responsibfematerial point neighboring will be mapped by the
for the appearance and disappearance of rotational deformation:
formations. However, because the strain tensor used in da= (I + Ou)dx, 1)
the pr_esent work does not mc_lude_ the nonlinear termhere Ou is the Jacobian ofi. We are interested in
a straightforward modal analysis will not generate su%\
S

henomena, and will therefore give rise to visual artifac ecomposing lu.
p ' V.V' gven visu : The infinitesimal strain tensoe, which measures the
for large deformations.

Even though a linear strain tensor does not propeﬁhange in the squared length @t during an infinitesi-

model the rotational deformation, fortunately, investigap-)(al deformation (i.e.|Cuf| < 1), is defined by

ing the kinematics of deformation provides a clue to = %(Du+DuT).
lessen such an inability; In fact, it has been generally .. . . ,
known that every infiniilesimal deformation car£1J be de'%tmg that%(Du—H]uT) 's a meaningful quantity, we
composed into a rotation followed by a strain [21]. Thi2" decomposelu as
finding forms the basis of the technique proposed here. Ou=1(Ou+0Ou")+3(Ou-OuN 2e+w.  (2)
Specifically, at every time step of the deformation sim- . . )
ulation, we first identify the (small) rotations occurrindrmeresnngly’ the skew-symmetrlc tensqr is closely
over the material points, and then integrate the effects g{ated to the curl 9f the displacement fieldx u . In
those rotations to obtain the deformed shape. fact, w can be rewritten as

This section commences with an investigation of the W= %(Du — DuT) = %(D X U)X = WX, (3)
kinematics of infinitesimal deformation to show how ] )
such deformations can be decomposed into a strain anffgrezx denotes the sAta{wdard skew symmetric matrix
rotation. This analysis is entirely based on the mechanfsVectorz. Thereforew = 5(0) x u) can be viewed as a
literature [21]. We then show how this decomposition cdRtation vector that causes rotation of the mater_lal p_omts
be used to extend modal analysis so that it keeps trétik@nd neax by angle 8 = [jw]| about the unit axis
of rotations, while still retaining the basic framework ofV = W/||W||. w is called thenfinitesimal rotation tensor
modal analysis. The method for integrating the effects BY substituting (2) and (3) into (1), we obtain
of rotations will be presented in the next section. da = dx+ edx + OW x dx,

M~ N——

strain rotation

which shows that an infinitesimal deformation consists of

Before introducing the decomposition of infinitesimal, gyain and a rotation. This decomposition, illustrated in
deformations, we 3f|rst define the necessary notation§y 1 has the practical benefit that, for small deforma-
Suppose thak € R* denotes the position of a materiajjos it is possible to keep track of the rotation of each

point of an elastic solid in the undeformed state, whig e rja) point by calculating the curl of the displacement
moves to a new positiora(x) due to a subsequents iy w— 1y
1 - 2 .

deformation. To focus on the displacements caused by
the deformation, we make use of tbesplacement field
u:R3— R3, such that

ax) =x+u(x), xeQ,

A. Kinematics of Infinitesimal Deformation

B. Extended Modal Analysis

This section presents how we extend the conventional
modal analysis so that it keeps track of the rotation
whereQ is the domain of the solid. Then, differentiatingexperienced by each material point during deformation.
both sides of the above equation with respect gives First, we present a brief introductory description of
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modal analysis and finite element methods; detailedi a tetrahedrorQe, and letue = [ug;|ud,lugslul,]™

explanations of these techniques can be found in tedtsen, the displacement of material poirk Qe is given

such as [20], [26]. by u(x) = He(X)ue, Where He(X) is the linear shape
The governing equation for a finite element model inction of the element. Substituting this into (3) yields

. ) the rotation vector fok:
MU+Cu+Ku =F, 4)

_1 2
where u(t) is a 3n-dimensional vector that represents We(x) = 3(0>)He(x)e = Welle. (7)

the displacements of the nodes from their original Note that, becauskle(x) is a linear function ofx, We
positions, andr(t) is a vector that represents the extern@d constant, and thuse(x) is uniform overQe. For the
forces acting on the nodes. The mass, damping, aiflation vector of a node, we use the average of the
stiffness matrice$!, C, andK are independent of time rotation vectors of all the tetrahedra sharing the node.
and are completely characterized at the rest state, undeased on the above discussion, we can now assemble
the commonly adopted assumptidRafyleigh damping v, of all the elements to form the global mathiX such
thatC = &M + (K, whered and{ are scalar weighting that wu(t) gives the composite vectav(t) that we are
factors. looking for! Finally, expandingu(t) with (5) gives

Modal DisplacementIn general, M and K are not w(t) = Waq(t) = Wq(t). 8)

diagonal, and thus (4) is a coupled system of ordinaB/ )
differential equations (ODES). Le® and a diagonal oth W and @ are characterized by the deformable

matrix A be the solution matrices of the generalizef€Sh at the rest state, and are thus constant over time.
eigenvalue problemK® = M®A, such thatd™M® = | Therefore we can precomputé. Equation (8) shows

and®TK ® = A. Since the columns b form a basis of that, as in the displacement (Equation (5)), we can

the 3n-dimensional space; can be expressed as a linegiepresent the rotational component of deformation in
combination of the columns: terms of q(t). We call W the modal rotation matrix

It should be noted that both of the modal matrices are
u(t) = @q(t). (5) meaningful only for moderately small deformations.

Here, ® is themodal displacement matrixf which the
i-th column represents theth mode shape, anglt) is a IV. INTEGRATION OF ROTATIONAL PARTS

vector containing the corresponding modal amplitudesgquation (8) provides an efficient way to keep track of
as its components. By examining the eigenvalues W rotations occurring at each node over time. However,
can take only dominanm columns of®, significantly gych rotations are not yet reflected in the calculation

reducing the amount of computation. In the followingef the displacement fieldi(t). Therefore, simulations
@ denotes the8n x m submatrix formed by the abovepgsed on (5), (6), and (8) in Section II-B will not

procedure. _ ~ produce proper rotational deformations. In this section,
S_ubstltutTlon of (5) into (4) followed by a premultipli-yye develop a method to integrate the effect of the

cation of " decouples (4) as rotational part into the calculation af(t).
M@+ Cqll+Kqg = ®TF, 6 To accommodate large deformations, the stiffness ma-

trix K in (4) should be replaced ¥ (u). Therefore, we
whereMq =1, Cq = (¢ +{A), andKq =/ are now all must deal with a governing equation of the form,
diagonal.®'F is called the modal force. The above de- o
coupling allows the motion components due to individual Mi+Cu+K(uu=F. 9)
modes to be computed independently and combined IPé(t u(t) = [ui(t)] = [uT()---uT(t)]. Then thei-th 3-

linear superposition. dimensional vectou;(t) represents the displacement of

Modal Rotation.We now develop a procedure to rep;hel-th node from its original position, measured in the

resent the rotational pary(t), in terms ofq(t). w(t) global coordinate frame. In order to measure the local

is a 3n-dimensional vector formed by concatenating a'iPtationS with respect_to the glopal coordinate fre_lme, we
of the 3-dimensional rotation vectors, each of which Embed.a chal coordinate fran{e} _qt each r_lo_de as
formed by taking the curl of the displacement fielcat shown in Fig. 2, such that at the initial state it is aligned

hn ri in ion l-A. . . ,
eac O.de’ as described .SeCt 0 IWhen assemblingV, 3 x 3 submatrices oW, for the rotation
For simplicity, we use linear tetrahedral elementg iors of all the tetrahedra sharing a node are not summed up but

in (4). Letuej (j € [1,4]) be the vertex displacementaveraged.
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decreases as the orientational differences decrease, we
o need to examine the structure df. For the simple

case whereM is a lumped diagonal mass matrix, the

approximation error is zero regardless Rf The proof

t—dt for the general case is given in Appendix I. Experimental
R, (yu; (e {i} (1) t results showed that the approximation error did not
significantly impact the visual realism of the simulation,
Fig. 2. Local coordinate frames attached to the nodes. even for coarse meshes.

Differentiating both sides of (11) with respect to time,

we obtainii = Ru*- + Ru*. Therefore,
with the global coordinate frame. We use the notation

Tae o MR T — nal Tl
{i}(t) to refer to the local coordinate frame at tirhe R'MU~MR U =MUu"+MR Ru, (14)

Let Rj(t) be the rotation matrix representing thgyhereMRTRU" is the Coriolis force resulting from the
orientation of {i}(t), and Uf(t)dt be the differential rotational movements of the local coordinate frames. If
displacement of the-th node at timet —dt measured the rotational movements occur at a moderate rate, the
from {i}(t —dt). Then, the finite displacementi(t) cCoriolis force is negligible compared to gravity. Thus, we
measured from the global coordinate frame is given Bymit the Coriolis force in the subsequent formulatfon.

t
A o
ui (t) _./o Ri(T)u ()dr. (10)  Assumption 1I: Warped StiffnestVe assume that the

The above procedure must be carried out for eve%)nllnear elastic forces can be approximated by

node. Therefore, we form the block-diagonal matrix K(ulu~RKu! < RTK(u)u~xKu', (15)

R = [§jRi], wherel <i,j <nandd; is the Kronecker . i i ) i

delta. Then,n equations with the form of (10) can bewhlch measures linear elastic forces in the local coordi-

assembled into a single equation nate frames, but resolves them in the global coordinate
’ frame. n

t
L
u(t) :/o R(T)u(T)dt. (11)  The above assumption is similar to thiffness warp-
This equation shows how the effect of the rotatio mg_proposed in [14], whe_reK(u)u ~ .RK(R a—X).
. . nlike element-based rotation of elastic forces [4], [15],
occurring at the nodal points can be accumulated. The : .
. i . : noge-based rotation can yield a non-zero total momen-
remainder of this section describes the procedure use : :
to compute the above integration um of elastic forces, and thus a spurious ghost force on
' a free-floating deformable object. However, the effects
of such a ghost force are suppressed by the constraint
A. Modal AnaIySiS in Local Coordinate Frames force acting on a r|g|d Support_
Equation (11) tells us that, instead of solving (9) for Now, we are ready to approximate (12) by a linear
u, we need to convert the equation into a form that ca&guation for modal analysis in the local coordinate

be solved foru-. By premultiplying both sides of (9) frames. Substituting (14) and (15) into (12), we obtain
. T .
with R', we obtain M+ Cit + Kub = RTF, (16)

T 3 _ pT
R [MU+CU+K(U)U] =R'F. (12) where we use the proportional dampi@g= M + (K.
The following two assumptions must then be made s linear elastodynamic equation fdr is same as (4),
convert (12) to the form shown in (16). except that the external force acting on each node needs
to be pre-rotated in accordance with its local coordinate

Assumption |: Commutativity in Fine Meshi¢e assume frame. Therefore, it is straightforward to reduce (16)

that the mesh being simulated is sufficiently fine that th@to a set of decoupled ODEs. The modal displacement
approximation, matrix ® obtained in Section IlI-B gives the relationship

R™M ~MRT, (13) ub(t) = dq(t), 17)

is valid. [] .
2When the coordinate frame movements occur at an extreme rate,

; ; ; : 1 the Coriolis force can be taken into account as an external force by
The error associated with the above apprOX|mat|onrleé'li’;lacimgj RHS of (18) withdT(RTF) T (MRTR®{). However,

rela_ted to the origntational differences between_ neigtlﬂ'e above replacement did not produce noticeable differences for the
boring local coordinate frames. To prove that this errekamples shown in Section VI.
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Mode 3

= D> UV

Fig. 3. Evolution of mode shapes in linear modal analysis (top row) and modal warping (bottom row); each box shows snapshots taker
three different amplitudes.

where we use the notatiayt) instead ofg-(t) for the Then, the history ofv(t), which determines that d®(t),
sake of readability. Based on this relationship, we casalso represented as a linear function.

replaceut in (16) with ®q(t), and, after premultiplying
both sides of the same equation witf, we obtain w(t) = -Wg, o<t<tk (21)

Mqfi+Coi+Kqa =@ (RF). (18)_ Now, R(t) can be obtained by simply convertirvg(t)
The aboy(_e degqupled OD_Es can be splved_ numericaifo the 3n x 3n block-diagonal rotation matrix. Finally,
using se_ml-lmpllcn |r_1tegrat|oﬁ.B_y manipulating (18), we exploit U-(t) = ®g(t) from (17) andq(t) = tlqu
we obtain the following expressions fok = q(t*) and from (20) to analytically evaluate (11) as follows:
g = q(t"): .
q* = ad 1+ B+ y(R 1) TR, (19) uk = [ RO®(1)dt = RkapgX, (22)
qk —ht [(a | )qk—l _|_qu—1 + y(Rk’ch)TFk’l],

wherea, 3, and y are diagonal matrices, theth com-
ponents of which are respectively

where Rk £ tlkfékR(t)dt. The procedure for computing

RX is given in Appendix II.

o . , The above equation implies a new deformation
ai=1- %, B =h <1— W) , Y= %i, scheme®* £ RK® can be regarded as a warped version
of the original modal basi®. The columns ofd give

the mode shapes at the time stepin which rotations
occurred at the nodal points have been accumulated.
Fig. 3 shows the evolution of three selected mode shapes
i _ over time for the case of a bar. The new method works
B. Formulation of Modal Warping basically in the same way as linear modal analysis,

We now need to evaluate (11) for the finite displacexcept that it uses a warped modal basis instead of a
ment uX at the time stepk. When a straightforward fixed linear modal basis.

numerical integration is employed, accumulation of the
numerical errors can give rise to an hysteresis effect such
that the deformable solid does not return to the initial V. MANIPULATION CONSTRAINTS

state even after all the external forces disappear.  Thys far, we have discussed the dynamics of an uncon-
To circumvent such an hysteresis effect, we analylgrained elastic body. Motivated by the work of Hauser et

cally evaluate (11) by taking a quasi-static approach that 1g] on positional constraints in a linear modal analysis

rampsq(t) from O tog* at each time stef. That is, we setting, we extend our deformation scheme to cope

use . ! with manipulation constraints that allow, for example,
q(t) = t?q , O<t<th (20) dragging/twisting of some nodes to certain positions
and/or orientations (see Fig. 7). We formulate these ma-
*We employed semi-implicit integration fon decoupled equations nipulation constraints as hard constraints. Constraints for

because it was easy to implement and the derivation for manipulatio it d lerati be d | di imil
constraints became simple. We have not encountered numeri\églk)CI y and acceleration can be developed in a simiiar

instabilities with a time step size of h = 1/30 second in all ouway. Note that orientation constraints for a deformable
experiments. The possible over-damping effects can be attenudigsdy have not been addressed in previous studies. Such

using theta-integration or Newmark integration. Alternatively, ON&onstraints are possible in our formulation because it
can use either IIR digital filters suggested in [10] or the closed form

solution given in [8]. Finally, we note that all these approaches ha@PlicCitly takes into aFC(_)U_nt t_he mean_orientation of ea_-Ch
the same time complexity becausesquations are already decouplednode, based on the infinitesimal strain tensor analysis.

in which h is the time step size}, = m; +hg + h?k; with
m;, ¢, andk; representing the diagonal entries M,
Cq, andKg, respectively.
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A. Position Constraints 3u x 3u block-diagonal matrixRK—* is obtained from

Let A be the number of constrained points, andugt R“"* by taking only the part corresponding to the
be the3A-dimensional vector consisting of the desire@Xercised nodes. Finally, substituting (25) into (23) and
displacements of the constrained nodes at a timelstegn@nipulating the resulting expression, we obtain the
Then, the constraint equation can be written as equation for the constraint force:

us = DEas = RePeas, (23) Fl Z RE1ATD, (26)
whered¥ is the unknown modal amplitude vect@p, is = T K Bk K +
the 3 x m matrix obtained from® by taking only the Where Ap = Re®cy®y, bp = ug — Re®eqy, and ()
rows for the constrained nodes, aﬁ@ is the 3\ x 3\ denotes the pseudo-inverse of a matrix. This con-
block-diagonal matrix obtained froK by taking only straint force can now be applied to the exercised nodes
the part corresponding to the constrained nddest through (25) to yield the desired modal amplitude vector.
the 3n-dimensional vectoF! represent the unknown We now examine the computational complexity

constraint force measured in the global coordinate franfd.(26). SinceA is time-dependent, the pseudo-inverse
Then, g should satisfy not only (23) but also (19) whe®f Ap must be computed at every time step. Fortunately,

this additional force is applied. That is, we can decomposé, into time-dependent and time-
. 1 okt LT k1 Skt independent parts, namel, = (RX)(®cyd)), mak-
de=aq“  +Bg T +y(R ) (FH+F7) ing it possible to compute its pseudo-inverse using
2 gk 4 y(R< 1) TP, 24) Al = (Pcy®)T(RE)™. The first part ofAl, is time-

C a1 1 e Tek] independent, and hence can be precomputed at the con-
where g = ag“ "+ Bg " + y(R®)'F " is the giraint initiation stage. The second part is time dependent
modal amplitude vector for the unconstrained case, i.8nd therefore must be computed at runtime; however,

g« in (19). this entails only a small computational load becail§e
The forces do not need to be exerted only at the (3 x 3)-block-diagonal.

constrained nodes, because exerting forces at some un-

constrained nodes can still cause the constrained nodes to

be positioned at the specified locations. We will refer 19 Orientation Constraints

the nodes at which forces are exertecrsrcisechodes.

When we directly drag a set of nodes, for example, theOrientation constraints can be implemented in a simi-

exercised nodes are identical to the constrained nod@sWway to the position constrains. Lgtbe the number of
In general, however, they can be different. constrained nodes, and let tBg-dimensional vectow

Let u be the number of exercised nodes. Rk, represent the desired rotations of the constrained nodes

the portion corresponding to the unexercised noddsa time stepk. Then, the constraint equation can be
should be zero. LeEX~1 be the3u-dimensional vector Wrtten as

consisting only of the constraint forces acting on the wK =Wk, (27)
exercised nodes, which can be obtained by removing the

3-dimensional vectors corresponding to the unexercis\gﬂereqlé is the unknown modal amplitude vector g
nodes fromF*~1. Then, we can rewrite (24) in terms ofis the 3n x m matrix obtained from the modal rotation
F matrix W by taking only the rows corresponding to the
q'é:qﬁ+y(R§*l¢x)TF>'§*1, (25) constrained nodes. Then, as in the position constraint
case,gX should simultaneously satisfy (25) and (27). By
anipulating these two equations, we obtain the equation
or the constraint force:

where @y is the 3u x m matrix obtained from® by
taking only the rows for the exercised nodes, and t

“We note that the content & (RY is its submatrix) used in this
section may differ from that oRK appearing in (22), since extra F)'§*1 = R)IE*lAgbo, (28)
movements may need to be incurred to realize the constraints. We
propose three ways of treating the problem: (a) employ the Newtaon; . T K K .
Rhapson method; (b) approximal¥ from R¥ of (22); or (c) use V\{herer - LIJ‘_:VCDX and b_O __Wquch_u' Un"k_e the po-
a slightly less accurate version of (22), i.eX = R"1ogk. Each Sition constraint casé, is time-invariant so its pseudo-
of these methods has its drawbacks; method (a) can require longgferse can be precomputed at the constraint initiation

computation times, method (b) can potentially cause oscillations, agﬁa Fi ;
’ . ; . Finally, w n ly th \Y nstraint for
method (c) can make the simulation off-phase by one time st g€ ally, we can apply the above constraint force

€p. : : :
We found method (b) to be a reasonable choice because, dur‘pﬁgthe exerc!sed nodes through (25) to obtain the desired
experiments, no noticeable oscillations has been observed. modal amplitude vector.
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C. Mixed Constraints 0.98 m/s? 49 m/s? 9.8 m/s?

When one set of nodes is position-constrained a
another (not necessarily disjoint) set is orientatio
constrained, the constraint force should simultaneousl
satisfy both types of constraint. A simple approagh , . . ,

would be to use an augmented formulation that corm
bines (26) and (28):

==

Fig. 4. A bar deformed by modal analysis (red), by modal warping

A t b (blue), and by nonlinear FEM (green) under gravity of different
Fk-1_ Rk-1|7p Pl magnitudes.
X X AO bO
However, this approach does not allow precomput@ = /e ® = lear”
tion of the pseudo-inverse becaugly Al]" is time-  ° i
S 0.6}
dependent. % s 15

i

To isolate the precomputable part, we employ a task++
priority approach [16] in which the position constraints .|
are regarded as the primary task and the orientation con-

=

Relative volume change

o
o

straints as the secondary task (or vice versa, depending % S L R T S
. . . . ravity (m/s’ ravity (m/s’
on the situation). Lettind, = A‘T,bp, the constraint force
can be written as Fig. 5. Error analysis of the bar shown in Fig. 4. (a) the relative

¥ L, displacement field error and (b) the relative volume change with
Fho1_ R';‘l{prr Aol —ALA)] oo — Adfy] }, (29) respect to the initial volume.

which causes the solution satisfying the position con-

straints is found first, and then the solution optimally Safenerated using the public domain software NETGEN.
isfying the orientation constrgints IS searphed for withity optain them dominant eigenvalues of large sparse
the null space of the position constraints. Note thahyare matrices and the corresponding eigenvectors,
A;gAIO is time-independent because the time-dependgt sed the MATLAB built-in C++ math function
parts cancel each other, and henpeo(l —AIITJAF,)]Jr eigs , which is based on the ARPACK [13] eigen-
can be precomputed. Consequently, the only nontriviidlue solver. All experiments were performed on a
computation remaining in the calculation of (29) is t®C with an Inteb Pentiun®4 3.2GHz processor, 1GB
compute the inverse &, which appears ifi, =Alb,= memory, and amVIDIA® GeForc& FX 5900 Ultra
(PeydD)T(RK)~1bp,. 256MB graphics card. We used the time step size of
h =1/30 second in all experiments reported in this
section. Model statistics and performance data are sum-
o ) ) . marized in Table I. Animation clips are available at
In the above description of manipulation constralntﬁﬁ Jlgraphics.snu.ac ki magchoifmodal warping
every positional or rotational displacement is measured -
relative to the frame of reference [25], which was intr
duced in Section Il. Thetatic position constraintghat

D. Static Position Constraints

0C':omparison to Other Methodd his experiment is to

K t of nodes be fixed at the initial locati compare the results generated by linear modal analysis,
Maxkes a Set of nodes be Tixed at the initial locations WitR 4, warping, and nonlinear FEM. We ran the three

respect to the frame of reference, is not implemented flethods to deform a long bar under different gravities.

terms of the manipulation constraints. Constraints of th"&ss for the nonlinear FEM [17], we employed explicit

rmtegration and used the time step size 0.001seconds
a9Gr numerical stabilities. Fig. 4 shows the snapshots
taken at the equilibrium states of the bar.

Fig. 5 (a) shows the plot of the relatile displace-
ment field error versus gravitational magnitude. We took
Our deformation scheme is implemented as an Aliashe result produced by nonlinear FEM as the ground

MAYA ™ plugin for a Microsof® Windows® environ- truth. The relative error in modal warping is smaller

ment, and also as a stand-alone application to expltian that in linear modal analysis although it increases as
programmable graphics hardware througHiDIA® Cg the gravitational magnitude increases. Fig. 5 (b) is the
and Microsof® DirectX® API. Tetrahedral meshes wereplot of the relative volume change with respect to the

DOFs in the governing equation and setting the displ
ments to zero.

VI. EXPERIMENTAL RESULTS
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(a)o.4ff —— warped
—o— Linear

(b) — Nonlinear
— Warped

o
w

o
N

Relative L error

o

Position-constrained Orientation-constrained Position/Orientation

1.96 392 588 7.84 9.8 [¢] 1 2 3 4 5
Gravity (m/sz) during 0.1 sec. Time (sec.)

Fig. 7. A bar manipulated with a position constraint (left), an
Fig. 6. Error analysis of free vibration: (a) the relative displace- orientation constraint (middle), and a position/orientation constraint
ment field error summed over space and time, and (b) the averdgght). The position constraints are represented by yellow spheres
magnitude of nodal displacements over time. and the orientation constraints are represented by RGB axes.

(a) (b)
initial volume. It shows that the relative volume chang © %%?
in modal warping is almost identical to that in nonlineg o+ \Q
FEM. Even though Fig. 5 (a) shows modal warpin
produces non-negligible, displacement field errors, it
was not easy to visually discriminate between the resy g
produced by modal warping and nonlinear FEM, unle
the results were seen overlayed. However, the effects due

: Fig. 8. Constraint-driven animation of a character with one de-
to the volume changes were clearly noticeable. formable part (the torso).

We also conducted a dynamic analysis while the bar
makes free vibration. We applied the gravity (of different

magnitudes as in the above experiments) during only th#mable part was its potbellied torso (Fig. 8(a)). As
first 0.1 seconds of the simulation. Fig. 6 (a) shows thge character made a dance motion, the potbelly made
plot of the relativel, displacement field error summed, dynamic passive deformation, excited by the gross
over space and time. Fig. 6 (b) is the time-series plg{otion of the character as in [10]. All the mesh nodes
of the average magnitude of nodal displacements d@ntained in the rigid pelvis at the initial setup were
the case of gravitational magnitu®8m/s*, in which gtatic position constrained, and thus their movement
we can observe a subtle difference in the frequency @incided with that of the pelvis. As shown in Fig. 8(b),
oscillation. It is interesting to note that, if measureghe deformable solid is attached to the skeleton by
relative to the error of linear modal analysis, the errgg,q position constraints (the yellow spheres) and one
of modal warping in the dynamic analysis (Fig. 6 (a)) igosition/orientation constraint (the RGB axes).

larger than that in the static analysis (Fig. 5 (a)). It results

from the aforementioned difference in the frequency Qfanipulation Constraints for Motion Retargetinghe

oscillation. manipulation constraints can also be used to retarget a

motion of an articulated character to that of a deformable
Manipulation Test.This experiment demonstrates theharacter. To demonstrate this, we consider two exam-
manipulation capability of our technique. Fig. 7 showsles. In the first example, a jumping motion of an artic-
from left to right, the resultant deformations in the casegated character is retargeted to a jelly box, as shown in
of only position constraints, only orientation constraintgig. 9(a). As in the character considered above, the nodes
and both position and orientation constraints. For th®ntained in the pelvis are static position constrained.
case of position constraints, the constrained node WHse motion of the jelly box is driven by the movements
identical to the exercised node. For the case of oriegfthe feet and head of the articulated character; to imple-
tation constraints, however, the set of exercised nod@ent this, a node corresponding to the middle of the two
had to be extended to include nodes neighboring th&et is selected and position/orientation-constrained to
constrained node. follow the average movement of the feet, and a node cor-

responding to the forehead is also position/orientation-
Manipulation Constraints for Animating Deformableconstrained to follow the movement of the head. Three
Body Parts.To demonstrate how the manipulation corsnapshots taken during this experiment are shown in
straints can be used to animate deformable parts Fa§. 9(a). For comparison, we also applied the traditional
a character, we simulated a character whose only awredal analysis to this case (see Fig. 9(b)).
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TABLE |
MODEL STATISTICS AND PERFORMANCE DATA

Model statistics Constr. | Precomputation (sec) Computation (sec/fr) FPS

Example Fig. | Vertices Faces Nodes Elements Modes\ n | FEM MA ODE Constr. Maya Cg

Bar 4 &7 354 352 99 240 8 1 1 | 0.046 0.063 0.001 0.001 60.0

Potbelly 8 1026 1056 363 1110 16 3 1 | 0.062 0.484 0.001 0.001 60.0

Jelly Box 9(a) 1642 1640 400 1440 32 2 2| 0.062 1.156 0.001 0.001 60.0

Flubber 9(c) 2802 2800 552 1513 64 6 1| 0.078 2.062 0.001 0.001 60.0 -

Dinosaur 10 28098 56192 1883 5484 31 1| 0312 1.422 0.002 0.001 11.9 103.8
(a) Warped || (b) Linear

¢S
‘el
() (d) . . . . . .
%, Fig. 10. Dynamic deformation and manipulation of a dinosaur.

aeda

i S
vertex data consists of the initial position of the vertex
] along with an additionaPm three-dimensional vectors

: / for the modal displacements and rotations of the vertex.
| Unlike [10], our method does not require any special
considerations on vertex normal corrections because the
per-vertex rotation vector is explicitly available to the
vertex program (see Appendix Ill). However, our vertex

In the second example, we applied a dance motion REPgram requires extra instructions for converting the
the flubber shown in Fig. 9(c). Because this charactré?lation vector into the rotation matrix. Given the ever-
has a more articulated shape than that in the previdngreasing capabilities of graphics hardware technology,

example, more constraints are required to properly m*%% expect that hardware restrictions on the number of

between the articulated and deformable characters. _IErUCt'OnS will soon Ee I|fte;1. del lied
placed one position/orientation constraint at the head, O test our approach on a large model, we applied our

and five position constraints at the torso, elbows, and f rdware implementation to the rubber dinosaur model

(see Fig. 9(d)). For the flubber, we used a larger numgggV/ously used by James and Fatahalian [9]. The mesh
of deformation modes (64 modes) than in experimenf%f'mte element modeling cor_15|sts of 5,484 tetrahedral
described above; this was necessary to accommodateif&nents and 1,883 nodal points, and the mesh for the

wider range of shape variations due to the increas%%‘alI dlspllay consists of .56'192 fa(;es al?d ?.8’.098 \I/ertlces.
number of constraints. e total precomputation time for the finite element

method and the modal analysis was less than 2 seconds,

Simulation of Large ModelsVhen the modal warping and the simulation, including the display, ran at about
technique is applied to a large model such as the dinos&QP fps. The result was quite realistic, even for cases
model shown in Fig. 10, simulating the deformation i§volving large deformations. Using our method, the
not the bottleneck; surprisingly, the dynamic update bypes of interactions allowed during runtime did not need
the vertex coordinates for display is the slowest prock® be restricted; for example, the tail of the dinosaur
dure. To achieve real-time simulation of the model, wePuld be manipulated interactively.

employed programmable graphics hardware as in [10].

The main CPU is devoted to simulating the deformable VII. CONCLUSION

model. The GPU updates each vertex using both theThe present work extends traditional linear modal
modal amplitude vector supplied from the CPU andnalysis to create a novel deformation technique that
the per-vertex data residing in the video memory abmbines the merits of this type of analysis, in particular
the graphics hardware. In our implementation, the pets ability to give real-time performance [19], [10], with

Fig. 9. Constraint-based motion retargeting.
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the ability to accommodate large rotational deformation e
An interesting feature of our technique is that it suppor:s
both position and orientation constraints, and hen ,
could be used for interactively manipulating the shay,,
of a deformable solid. The constraints can also be us
for some less obvious but very useful purposes, suchol5
to model articulated deformable characters or to dri

a keyframe animation such that the animator contrc © 1 2 ey © 8 7

the movement of only a few constrained points then the

technique generates the movement of all the nodal poirft§: 11. [R™M —MRT|| in three different mesh resolutions1 x
We expect the deformation technique proposed heté S (16d),19x4x4 (green), anlx5x5 (blue)

will prove useful in many application areas, including

computer games and character animation. the mesh. Remembering tHat= [&;Ri], we can expand

L . the approximation error as
Limitations and Future WorkA shortcoming of our

method is that, although it adequately accounts for the R'M —MRT = [&;R]][m;l] — [m;l] [&;R{]
rotational component, it does not preserve the volume. = [miniT] — [ijJT]
Therefore, deformations involving a large degree of _ [m-(R-—R-)T]
stretching or compression may generate noticeable ar- b
tifacts. Another shortcoming of our method is that, everere, the error in each block is dependent on the orien-
when animating a single undamped mode, the vibratitational difference, and thus it decreases with increasing
frequency is constant independent of the motion. The&esh resolution. As one refines the mesh, the number of
behaviors are obvious consequences of using a strafi-zero blocks also increases. However, this increase
tensor consisting of only linear terms. More accuratgé cancelled out by the decrease wf; because the
modeling of such deformations would require the udetal massy m; is independent of the mesh resolution.
of a nonlinear strain tensor. Therefore, the matrix norm of the approximation error
Further research is needed to address another lim@gcreases with increasing mesh resolution.
tion of our technique. Currently, our technique supports TO assess the approximation error, we prepared three
only constrained deformable objects attached to rigigeshes of different resolutions for the same long bar:
supports. We plan to extend our work for free-floating1x 3x 3, 19x4 x4, and21x5x5. Fig. 11 shows the
deformable objects in the future by combining the moda@Pproximation erroff R™M —MRT|| with respect to the
Warping framework with r|g|d body simulation as Hausetptal mass of the deformable bOdy Even with the coarsest
et al. [8] did for free-floating objects that undergdnesh, the error is withif.37% of the total mass.
moderately small deformations. Collision detection and
response among deformable solids and their surrounding
environment could also be handled as in [8].

APPENDIX I
COMPUTATION OF EQUATION (22)

To computeR¥ in (22), we first convert the rota-
tion vectorw;(t) of each node into the rotation matrix
Z(wi(t)). For this conversion we employ Rodrigues’

This research was supported by Korea Ministry dermula [21] that expresses the rotation matrix in terms
Information and Communication. This research was alghthe angle and the unit axis of rotation. Lef be the
partially supported by Automation and Systems Researich three-dimensional vector &#q¥. Then,w;(t) = Tw¥,

Institute at Seoul National University, and the BraiWhereT =t/t. Rodrigues’ formula gives

ACKNOWLEDGEMENTS

Korea 21 Project (1) =1+ (W) sin 7wl |+ (W) *(1— cos|rw))
where Wk = wi‘/[[wk||. Now, we integrate both sides of
APPENDIX| this equation front = 0 to 1, Then,RK 2 [§ 2 (Twk)dT
ANALYSIS OF EQUATION (13) is given by

. . . B K A e
The mass matrlx,_assembled from Imear_t_etrahedralRik: {I +(W=<X)1 cos;(uw. [ +(ka)z<1_sm\|\LV. H)}
elements, can be written & = [m;1] for 1<i,j <n, i (i

wherel is the 3 x 3 identity matrix, andmn; is non-zero Finally, the composite block-diagonal rotation matrix for
if and only if thei-th and j-th nodes are connected inwk = [wX] can be constructed big* = [&;RY].
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/I float3 phi# is the #-th modal displacement.

APPENDIX I
VERTEX PROGRAM IN CG

[13]

/I float3 psi# is the #-th modal rotation. [14]
/I uniform float4 q contains 4 modal amplitudes.

float3 u = phil*q.x+phi2*q.y+phi3*q.z+phi4*q.w;

float3 w = psil*g.x+psi2*q.y+psi3*q.z+psid*q.w; [15]
/I Coefficients for Rodrigues’ formula [16]

float

w_len = length(w);

float3 w_hat = normalize(w);

float s, c; sincos(w_len, s, c);
float c1 = (1-c)iw_len;
float c2 =1 - siw_len; [17]
/I Position correction: \tidle{R}w) * u
float3 P = position + u; 18
P = P + cross(w_hat,u)*cl [18]
+ cross(w_hat,cross(w_hat,u))*c2;
[19]

/I Normal correction: R(w) * N

float3 N

N

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Bl

[10]

[11]

[12]

normal;
N + cross(w_hat,N)*s

+ cross(w_hat,cross(w_hat,N))*(1-c); [20]

[21]
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