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ABSTRACT
It is a hard problem to understand the search process of
particle swarm optimization over high-dimensional domain.
The visualization depicts the total search process and then it
will allow better understanding of how to tune the algorithm.
For the investigation, we adopt Sammon’s mapping, which is
a well-known distance-preserving mapping. We demonstrate
the usefulness of the proposed methodology by applying it
to some function optimization problems.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—Data
mapping ; G.1.2 [Numerical Analysis]: Approximation—
Nonlinear approximation; I.3.m [Computer Graphics]:
Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Particle swarm optimization, visualization, data mapping

1. INTRODUCTION
Particle swarm optimization (PSO) is a new evolutionary

algorithm [9, 12], of which the original intent was to simu-
late the choreography of a bird flock (see Figure 1) graph-
ically. In PSO, each potential is seen as a particle with
certain velocity flying through the domain. Each particle
adjusts its flying according to the flying experiences of itself
and its companions. PSO finds optimal regions of search
spaces through the interaction of particles in population. It
has been successfully applied to a number of optimization
problems. Some studies showed that it often dominates ge-
netic algorithms (GAs) [7, 13]. Since its appearance, PSO
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Figure 1: Bird flock (photograph by Manuel Fresti)

has gone through some improvements such as the inertia
weighting factor and fine tuning [8, 22, 21].

The visualization method greatly enhances understanding
and improves intuition. Understanding the search process of
PSO is not an easy problem. However, its visualization is in-
teresting and helps us to understand the search process. Vi-
sualization is one of the most basic tools for studies of search
spaces. For the visualization of population-based search, the
most popular method is the fitness flow over time as in many
evolutionary algorithm papers. In this paper, we propose a
new visualization technique for PSO, primarily using Sam-
mon’s mapping [19].

The remainder of this paper is organized as follows. In
Section 2, we introduce previous visualization attempts for
population-based evolutionary search such as genetic algo-
rithms and particle swarm optimization. We also briefly re-
view particle swarm optimization and Sammon’s mapping.
In Section 3, we present our approach based on Sammon’s
mapping. Sample experiments are presented in Section 4.
Finally, we give some discussion in Section 5.

2. PRELIMINARIES
2.1 Prior Work Related to Population-Based

Search
Traditionally, the fitness-iteration plotting has been pop-

ular for the visualization of evolutionary process. A great
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number of papers include these plottings to visualize their
search process.

Although fitness-iteration plot is one of the most common
methods, it is not the only one. Other methods have been
proposed in various forms. Dybowski et al. [5] proposed a
visualization method of GAs by using Sammon’s mapping.
There have been several studies about GA visualization us-
ing Sammon’s mapping [3, 14, 18]. They presented initial
studies about small or particular problems. An extensive
survey of GA visualization techniques appeared in [10]. In
this paper, we focus only on the visualization of PSO using
Sammon’s mapping.

The most intuitive visualization of PSO is to plot the po-
sitions of all the particles of the swarm per iteration. This
method yields an animation of particles. In the case that
the domain of PSO is 2 or 3-dimensional space, such visu-
alization is straightforward. But when the domain is high-
dimensional as in most cases, it is not so easy problem. We
will treat such general cases neatly in this paper.

We also mention existing work [1, 16, 23] on diversity
measures that are often used for combinatorial optimization
problems which have finite domains. In particular, the re-
sampling ratio is used to measure the number of times the
same solution is recomputed, and the similarity ratio is used
to measure the average diversity of a set of solutions. This
kind of measures could be adapted to deal with continuous
domains, e.g., by splitting continuous domains into discrete
interval sets, and could be used to provide an insight into
a PSO search process by quantifying intensification and di-
versification. There have been other studies for PSO visual-
ization. There was a study using some derived statistics to
represent the convergence status of the swarm [2]. We can
also find an enhanced histogram visualization technique in
[20]. However, these methods have made limited success.

2.2 Particle Swarm Optimization
In this subsection, we briefly describe the standard PSO

algorithm. A swarm is a population of particles. Each par-
ticle is treated as a point in m-dimensional bounded space
X. Each particle i has position xi, velocity vi, and the best
previous position bi (xi, vi, bi ∈ X). Let g be the global
best particle. The performance of each particle is measured
according to a predefined fitness function. Initially, each
particle has a random position (xi ∈ U [xmin, xmax]) and
velocity zero, i.e., vi = 0. The particles are updated by the
following formula.

vi ← w · vi + c1 · r1 · (bi − xi) + c2 · r2 · (g − xi)

and xi ← xi + vi,

where w, c1, and c2 are constants, and r1, r2 ∈ U [0,1].
Then, bis and g are updated. The inertia weight w pro-
vides a balance between global and local exploration. The
acceleration constants c1 and c2 represent the weights of
the stochastic acceleration terms that pull each particle xi

toward bi and g, respectively. Small values make particles
roam far from target regions before being tugged. But, large
values result in abrupt movement toward that regions.

2.3 Sammon’s Mapping
Sammon’s mapping [19] is a mapping technique for trans-

forming a dataset from a high-dimensional (say, m-dimensio-
nal) input space onto a low-dimensional (say, d-dimensional)

output space (with d < m). The basic idea is to arrange all
the data points on a d-dimensional output space in such a
way that minimizes the distortion of the relationship among
data points. The distances between the data points in the
output space resemble the distances in the input space de-
fined by given metric as faithfully as possible. The resultant
output space depicts clusters of the input space as groups of
data points mapped close to each other in the output space.

Sammon’s mapping tries to preserve distances of the orig-
inal domain. This is achieved by minimizing an error cri-
terion which penalizes the differences of distances between
points in the input space and the output space. Consider
a dataset of n objects. If we denote the distance between
two points xi and xj in the input space by δij and the dis-
tance between x′

i and x′
j in the output space by dij , then

Sammon’s stress measure E is defined as follows:

E =
1

Pn−1
i=1

Pn

j=i+1 δij

n−1
X

i=1

n
X

j=i+1

(δij − dij)
2

δij .

The stress range is [0,1] with 0 indicating a lossless mapping.
This stress measure can be minimized using any minimiza-
tion technique. Sammon [19] proposed a technique called
pseudo-Newton minimization, a steepest-descent method.
The complexity of Sammon’s mapping is O(n2m) because
of computing its stress function. There were several studies
about Sammon’s mapping [4, 6, 17].

3. PROPOSED APPROACH
In this section, we present a new visualization method.

The method produces an animation of particles by plotting
the projected 2-dimensional (2D) positions of all the parti-
cles in the swarm per iteration. In the case that the domain
of PSO has two or three dimension, since the representation
itself of each particle means its position in output space,
the visualization of the search process of PSO is a quite
easy task. But most optimization problems have higher-
dimensional domain. In such general cases, the visualiza-
tion of particles becomes a non-trivial task. We focus on
the visualization of particles on high-dimensional space.

Figure 2 depicts a sketch of our visualization. All the
particles together with the global best are presented in 2D
space. Their traces are also indicated. As a PSO search pro-
ceeds, we can check the convergence of particles immediately
through this visualization. In the figure, seven particles are
converging toward the global best during four iterations.

To transform particles from high-dimensional space onto
2D space, we adopt a well-known distance-preserving map-
ping, Sammon’s mapping [19] given in Section 2.3. First,
when a PSO starts, we map initial random particles onto
2D space by using the original Sammon’s mapping. Then,
we repeat the following procedure until the PSO terminates.
Since each particle has its current position and next one re-
flecting its current velocity, to make the continuous move-
ment of each particle, we map all the particles of next gen-
eration together with all current-generation ones onto 2D
space by a variant of Sammon’s mapping. Briefly speaking,
this variant mapping fixes the 2D positions of particles of
current generation and determines only those of next gener-
ation. Then, each particle can move without discontinuity.
However, the variant mapping may produce large error be-
cause of fixing a half of total points. We can check the
success degree of the variant mapping with Sammon’s stress
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Particle in Iteration 1
Particle in Iteration 2
Particle in Iteration 3
Particle in Iteration 4

the global best

Figure 2: Schematic form of the proposed visualiza-
tion

Map initial n particles onto 2D output space
by the original Sammon’s mapping;

Output n particles of current generation onto 2D display;
do
{

Map n particles of next generation
together with those of current generation
onto 2D output space by our variant mapping†;

Efface n particles of current generation
from 2D display leaving their traces;

Output next n particles onto 2D display;
Replace n particles of of current generation

with those of next generation;
} until (PSO stops);

† See Figure 4.

Figure 3: Framework of the proposed visualization

measure as well. The closer to 0 the measure, the more
successful the mapping. In most cases, we could obtain suc-
cessful mappings with about 0.1 or below as the Sammon’s
stress measure. Figure 3 gives a pseudo-code of our visu-
alization procedure and Figure 4 shows the details of our
variant of Sammon’s mapping.

4. SIMULATION
As a sample problem to apply our visualization, we chose

the function optimization problem. We used three test func-
tions (FSphere, FRastrigin, and FSchwefel) to minimize, which
are given in Table 1. They are from [24] and have differ-
ent levels of difficulty. FSphere is a unimodal function and

variantMapping(n, n particles of current generation
+ n particles of next generation)

{
for each i = 1, 2, . . . , 2n

for each j = 1, 2, . . . , 2n

δij ← distance between point i and point j;
δmax ← maxi,j δij ;

for each i = n + 1, n + 2, . . . , 2n

(xi, yi) ∈ U [−δmax, δmax]× [−δmax, δmax];

repeat T times
for each i = n + 1, n + 2, . . . , 2n

(e1
x, e1

y, e2
x, e2

y)← (0, 0, 0, 0);
for each j = 1, 2, . . . , 2n (j 6= i)

dij ←
p

(xi − xj)2 + (yi − yj)2;

if dij 6= 0, δij 6= 0, and dij 6= δij then
// calculation of derivatives

e1
x ← e1

x + (xi − xj)
“

1
dij
− 1

δij

”

;

e1
y ← e1

y + (yi − yj)
“

1
dij
− 1

δij

”

;

e2
x ← e2

x +
“

1
dij
− 1

δij

”

−
(xi−xj)2

d3
ij

;

e2
y ← e2

y +
“

1
dij
− 1

δij

”

−
(yi−yj)2

d3
ij

;

if e2
x 6= 0 and e2

y 6= 0 then

(xt
i, y

t
i)← (xi, yi) + ∆ ·

„

e1
x

|e2
x|

,
e1

y

|e2
y |

«

;

else
(xt

i, y
t
i)← (xi, yi);

// correction of n particles of next generation
for each i = n + 1, n + 2, . . . , 2n

(xi, yi)← (xt
i, y

t
i);

// Sammon’s stress measure

E ← 1
P2n−1

i=1

P

2n
j=i+1

δij

P2n−1
i=1

P2n

j=i+1

(δij−dij)2

δij
;

}

∗ We set ∆ to be 0.2 in our experiments.
∗ We set T to be 1, 000 in our experiments.
∗ n is the number of particles.
∗ Output positions of first n points are fixed during the run
of this algorithm.

Figure 4: Pseudo-code of our variant Sammon’s
mapping

so very easy to find the minimum. FRastrigin has the inter-
mediate level of difficulty. FSchwefel is the hardest among
three functions. To give some intuition about test func-
tions, the bottom of Table 1 also shows function graphs for
2-dimensional cases using Mathematica developed by Wol-
fram Research.

We used two PSOs varying movement strength. The pa-
rameters of PSO for slow movement (PSO-S) are as follows:
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Table 1: Test Functions
Function m Range of xi: [li, ui] Optimum Optimal value

FSphere =

m
X

i=1

xi
2 100 [−5.12, 5.11] (0, 0, . . . , 0) 0.00

FRastrigin =
m

X

i=1

(xi
2 − 10 cos(2πxi) + 10) 20 [−5.12, 5.11] (0, 0, . . . , 0) 0.00

FSchwefel =
m

X

i=1

−xi sin(
p

|xi|) 10 [−512, 511] (420.968746, . . . , 420.968746) −4189.828873
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(a) FSphere (m = 2)
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(b) FRastrigin (m = 2)

-500

-250

0

250

500 -500

-250

0

250

500

-500

0

500

-500

-250

0

250

500

(c) FSchwefel (m = 2)

parameter value

inertia weight: w 0.01
acceleration constant: c1 0.01
acceleration constant: c2 0.01

# of particles: n 20
# of iterations 1500

Those of PSO for fast movement (PSO-F) are in the follow-
ing.

parameter value

inertia weight: w 0.9
acceleration constant: c1 1.2
acceleration constant: c2 1.2

# of particles: n 20
# of iterations 1500

We applied PSO-S to the former two functions, FSphere and
FRastrigin. Both of PSO versions, PSO-S and PSO-F, are
applied to the hardest function, FSchwefel.

Figure 5 shows traditional visualization results about our
test runs. Each shows the best and average qualities over
iterations. We can see that the best and average qualities
of particles are improved as evolutionary step increases. We
may guess the convergence degree of particles from the gap
between the best and the average. But we do not clearly
check the convergence, the interaction between particles,
and the area searched by PSO, directly from these figures.

We visualized the two-dimensional motion of a set of par-
ticles that was acquired from our PSO experiments, by us-
ing a simple rendering routine based on OpenGL (see Fig-
ure 6). For each PSO experiment, we determine its viewing
region according to the lowest and highest values of the two-
dimensional locations that has been passed by moving par-
ticles throughout the entire evolutionary process. For each
evolutionary step, each particle is drawn as a small filled
circle ‘•’ at its two-dimensional coordinate in the viewing
region. We also display the positions of the global best and
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(a) FSphere (PSO-S)
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(b) FRastrigin (PSO-S)
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(c) FSchwefel (PSO-S)
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(d) FSchwefel (PSO-F)

Figure 5: Traditional visualization: the best and av-
erage qualities according to iteration

the global optimum as a dotted circle and an empty diamond
‘�’, respectively.

Additionally, our visualization tool depicts which regions
of search space have been intensively explored by means of
color intensities varying across the viewing region. To do so,
we partition the two-dimensional region into a grid of small
rectangular cells, and then count the number of visits to
each cell by any particles incrementally through evolutionary
steps. At an arbitrary step, both the global exploration of
search space and the individual trajectory of each particle
can be represented by displaying every cell that has been
visited at least once as a colored rectangle with its intensity
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[Initial particles] −→ [Intermediate particles] −→ [Intermediate particles] −→ [Final particles]

(a) FSphere (PSO-S)

(b) FRastrigin (PSO-S)

(c) FSchwefel (PSO-S)

(d) FSchwefel (PSO-F)

∗ Filled circle (•): each particle, dotted circle: the global best, and empty diamond (�): the optimum.

∗ Website for video clips: http://cg.kw.ac.kr/kang/pso.

Figure 6: Visualizing the search process of particle swarm optimization
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(a) FSphere (PSO-S)
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(b) FRastrigin (PSO-S)
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(c) FSchwefel (PSO-S)
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(d) FSchwefel (PSO-F)

Figure 7: Sammon’s stress measure according to it-
eration

determined by the number of visits.
Figure 6(a) shows a sequence of images in which twenty

particles explore a one-hundred dimensional search space to
pursue an optimal value that minimizes FSphere. Due to the
simple, unimodal shape of the function, all of those particles
navigate along continuous and smooth trajectories to arrive
at the global optimum within 1,500 evolutionary steps.

Figure 6(b) visually demonstrates the increase of difficulty
in finding the global optimum of FRastrigin even in a lower,
twenty-dimensional search space. A significant amount of
high-frequency oscillation takes place in the moving trajec-
tories of particles because of a large number of local minima
distributed regularly in the search space. After 1,500 itera-
tions, just a few of those particles discover the global mini-
mum, while the remaining particles still oscillate around the
neighboring local minima.

Both PSO-S and PSO-F fails in reaching the global op-
timum of the most challenging test function, FSchwefel in a
ten-dimensional space, in which the large distance between
the global minimum and the second best local minimum
often guides particles along the wrong direction. In Fig-
ure 6(c), particles eventually are trapped around a set of ir-
regularly distributed local minima on their misguided ways.
The faster moving speed of PSO-F partially addresses this
problem by jumping into the nearby regions of lower values,
but fails to approach the global optimum. Figure 6(d) ex-
hibits such a process effectively through the successive gen-
eration of densely crowded regions.

Each in Figure 7 shows Sammon’s stress measure accord-
ing to evolutionary step. We can see that it is about 0.1 or
below in most cases. It means that the mappings were well
done with little loss.

For more visually appealing results, you can find a col-
lection of video clips that captures the image sequences for
every experiment from the following Website:
http://cg.kw.ac.kr/kang/pso.

5. DISCUSSION
In this paper, we depicted the search process of particle

swarm optimization by effectively visualizing the motion of
a set of particles on invisible high-dimensional space. Not
only the proposed visualization pursues minimizing the in-
formation loss in the aspect of preserving distances between
particles, but it also keeps the continuity of each particle.
Through sample experiments, we could see the views that
particles are smoothly converging toward the global best,
they are moving or jumping by forming a cluster, and so on.

For sample tests, we chose the standard PSO algorithm re-
lying only on the global best and the local best. However, we
can also apply our visualization method to other improved
PSO algorithms with new features, e.g., the neighborhood
best [8], Gaussian mutation [11], chaos [15], self-adaptation
[25], and so on, and then watch some new particle-moving
patterns appearing from the added features.

We expect that the proposed visualization will give better
understanding of how to tune the PSO algorithm by helping
detect some troubles occurring during the search.
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