
Interactive Build-Up of Animation Sequences with
Captured Motion Data

Sang Won Lee
Kwangwoon University

231@kw.ac.kr

Kang Hoon Lee
Kwangwoon University

kang@kw.ac.kr

Abstract
We present a new approach to interactive
resequencing of captured motion data that
allows the user to progressively extend his/her
animations such that each extension can best
fit user requirements with respect to space,
time, and pose. In the preprocessing phase,
captured frames are clustered into pose groups,
and inter-connected into a transition graph.
For each step in building an animation se-
quence at runtime, the user is allowed to
browse through motion paths in the graph that
are connectable to the existing sequence by
specifying the desired locations and poses at
path ends, and to select one of those paths to
extend the animation. Instead of using graph
search algorithms, our path browser unrolls
the graph locally into spatial search trees and
employs an efficient nearest-neighbor search
method to quickly find the optimal paths that
satisfy user inputs. We demonstrate the use-
fulness of our approach by creating animation
examples in scenarios involving spatial, tempo-
ral, and postural requirements simultaneously.

Keywords: computer animation, motion
capture, interactive editing

1 Introduction

Motion capture technology has opened new pos-
sibilities for enabling common people with no
artistic skills to synthesize natural and realistic
animation sequences of moving figures. Cap-
tured motion data can not only be used in its

original form, but also be processed into various
new shapes and sequences without recognizable
loss of motion quality. Temporal resequencing
methods can play back the original motion data
in new orders by allowing transition between
any two frames of similar poses. This process
is often facilitated by representing motion data
in a graph structure in which each node corre-
sponds to a frame, and directed edges encode
transitional relationships between frames. Then,
any arbitrary paths on the graph can correspond
to valid rearrangements of the original motion.

Graph representation reduces the task of anima-
tion authoring to a task of path selection, which
is well-suited to automated computation. Given
user-specified constraints on new animation se-
quences such as initial and final locations of
characters, various graph search algorithms can
be employed to find optimal paths under pre-
defined optimality measures, and convert those
paths into smoothly connected motions. How-
ever, such an optimization-based approach re-
quires significant amount of computation, and
may even fail if a large number of constraints
are simultaneously given to describe the desired
animation in detail. For example, if the user
specifies a large number of way-points, each of
which is associated with desired time and pose,
any possible resequencing of the original motion
could not satisfy all of these conditions. As a re-
sult, the user should iteratively adjust constraints
and examine the corresponding results until sat-
isfactory animation sequences are obtained.

Instead of constructing the entire sequence at
one time, we present an alternative approach to



interactive motion resequencing that allows the
user to progressively extend his/her animation
sequence with input motion data. The input mo-
tion is preprocessed to obtain groups of similar
poses and a graph representing motion transition
(see Section 3). For each extension of an an-
imation sequence, the user selects a pose from
the pose groups, and connects the pose to the
last pose of the existing sequence by one of the
available motion paths in the graph (see Sec-
tion 4). The user can quickly browse through a
large number of connectable paths by specifying
the desired location of the new pose, and exam-
ining the spatial trajectory and temporal interval
of the best path whose end position is nearest
to the input location. We maximize the respon-
siveness of this interaction cycle by unrolling the
graph over the surrounding space and employ-
ing an efficient nearest-neighbor algorithm. Fig-
ure 1 shows the experimental user interface that
supports our overall procedure in a seamless and
intuitive way.

The main advantage of our approach is that the
user can rapidly build up his/her intended an-
imation sequences in a manner similar to as-
sembling construction toys, while precisely con-
trolling details in the space-time domain within
the range of possible motion resequencing. In
our experiments with boxing and breakdancing
motion data, the usefulness of our approach is
demonstrated by showing that target animations
can be easily created through a small amount of
interactive trial and error in the predefined sce-
narios involving spatial, temporal, and postural
requirements (see Section 5). We expect that our
approach would be highly effective for movie
pre-visualization, dance choreography, and vi-
sual storytelling.

2 Related Work

For the last decade, researchers in computer
graphics have explored various ways to synthe-
size the motion of animated characters by using
captured motion data. Recent techniques allow
us to broaden the range of synthesizable mo-
tions by deforming, blending, and resequencing
original motions [1, 2, 3]. Furthermore, these
low-level motion editing operations are often

Figure 1: The user interface. For each exten-
sion of an animation sequence, the
user selects a pose from the collec-
tion at the bottom of the screen, in-
serts the pose into the pink timeline,
browses through connectable motion
paths in the large panel, and accepts
one of those paths by tapping the but-
ton at the top left.

combined with high-level descriptions of char-
acter behaviors such as navigation [4], interac-
tion [5], and competition [6] to facilitate inter-
active or automatic generation of non-trivial an-
imation sequences, involving a large number of
characters and complex environments.

Temporal resequencing of motion data is one
of the most important approaches in data-driven
animation synthesis due to its capability of cre-
ating new narrative flows that are completely
different from captured scenarios. Graph repre-
sentation has been an effective means of encod-
ing the transitional relationships between mo-
tion frames. Automatic construction of small-
sized and richly connected graphs has been fo-
cused on to save memory space and improve
computational efficiency [7, 8]. In addition,
the original graph structure has been extended
to increase the representational power with re-
spect to human recognition [9] and motion
synthesis [10]. Animation sequences of user-
controlled or autonomous characters are often
constructed by combining these graph structures
with various search algorithms [11, 12]. Instead
of using graph search techniques to obtain the
entire animation sequence at once, we allow the



user to progressively compose his/her anima-
tion with the support of our path browser that
searches for and displays locally connectable
paths in response to the user-specified location
and pose by using an efficient nearest-neighbor
search method.

It has been an interesting topic in computer ani-
mation for novices to intuitively create their in-
tended animation sequences of articulated char-
acters. Davis et al. presented a sketch-based
interface in which the user draws a series of
stick figures in two-dimensional space to obtain
articulated-body motion in three-dimensional
space through pose estimation and key-frame in-
terpolation [13]. Focusing mainly on locomo-
tion such as walking and jumping, the sketch-
based interface developed by Thorne et al. takes
a curved path as its input instead of key poses
and maps the style of each segment of the path to
a predefined locomotion type to create a stylized
moving sequence along the path [14]. As an al-
ternative to the well-known key-frame interface,
Igarashi et al. suggested a spatial key-framing
in which key poses are arranged in the space do-
main, rather than in the typical time domain, so
that the user can design interpolated motions by
moving the location of a control cursor in the
space [15]. With the same goal as in these pre-
vious methods, we provide the user with an in-
tuitive interface in which only the iterations of
selection and connection can construct a realis-
tic animation sequences as intended.

3 Preprocessing Data

Given input motion data {xt|1 ≤ t ≤ T} in
which T consecutive frames of articulated poses
x are included, we preprocess the data to form
K groups of similar poses and a graph repre-
senting allowable transitions among motion sub-
sequences. Both processes require a common
measure of the similarity between any given two
poses xi and xj , which is calculated by the dis-
tance function suggested by Lee et al. [4], with
the positional difference intentionally removed
from the original equation for supporting only
the relative coordinate system, as follows.

d(xi,xj) =

M∑
m=1

ωm||log(q−1
i,mqj,m)||2 (1)

where qm ∈ S3 is the orientation of the m-th
joint. The weight value ωm controls the relative
contribution of the m-th joint, which was fixed
to a constant value for every joint in our experi-
ments.

3.1 Pose Clustering

Each iterative addition of short motion se-
quences starts by choosing a desired pose from
an array of example poses. Displaying every
pose in the input motion to the user makes the
selection difficult because even a second of mo-
tion consists of thirty or more poses, and many
of those are highly similar to each other. In order
to summarize a large number of poses as a small
set of representative poses, we sort poses into
groups and exhibit only the central pose of each
group. The K-means algorithm is employed to
cluster poses by minimizing the following error
function.

E =

K∑
k=1

Nk∑
i=1

d(xi
k,x

c
k) (2)

where K is the number of groups, Nk is the
number of poses belonging to the k-th group,
and xc

k and xi
k represent the central and i-th pose

of the k-th group, respectively. In order to mini-
mize this function, we initially choose arbitrary
K poses as the centroids, and then alternately
update the association of poses with groups and
the centroids of groups until convergence. When
updating the group membership, each pose is in-
serted into the closest group whose central pose
is the most similar to the pose. Then, the cen-
troid of each group is redetermined as the pose
whose sum of the distances to other poses in the
same group is the lowest. Once every pose has
been grouped, each t-th pose is associated with
the index of its group, which is denoted as k(t)
in the remainder of this paper.



Figure 2: The process of our graph construction.

3.2 Graph Construction

We build a directed graph structure in which
each node n corresponds to an interval [s, e] of
the input motion and each edge of an ordered
pair of two nodes (ni,nj) represents that the
previous interval [si, ei] can be smoothly con-
nected to the next interval [sj , ej ] via the sim-
ilar poses at ei and sj . In order to accelerate
the process of searching for motion paths at run-
time, each node n is additionally annotated with
a set of the pose groups included in its interval
{k(t)|s ≤ t ≤ e}. The size of this set is usually
much less than the number of frames (e−s+1)
because consecutive poses are highly probable
to belong to the same group.

We first create nodes nt of a single frame [t, t]
for every frame 1 ≤ t ≤ T (see Figure 2 (a)).
The initial connectivity over the nodes is deter-
mined with the support of an affinity matrix M
whose elements are the distances between ev-
ery pair of frames [d(xi,xj)]i,j=1,··· ,T (see Fig-
ure 2 (b)). Specifically, any two nodes ni and
nj are connected if Mi,j is a local minimum and
less than an experimental threshold value. The
threshold balances between the flexibility and
quality of the resulting graph. In other words,
a large threshold yields a richly connected but
poor quality motion graph, and vice versa. To
avoid dead ends, we run Tarjan’s algorithm to
find strongly connected components and leave

only the largest component [16].

The runtime performance of our interactive path
searching is inversely proportional to the num-
ber of nodes in the graph, because we unroll the
graph nodes locally in the space for each new
pose and search for the nearest node from the
user-specified location. We reduce the number
of nodes by merging adjacent nodes of only a
single choice of transition to minimize mem-
ory space and runtime computation (see Fig-
ure 2 (c)). Specifically, if ni and ni+h in the
initial graph have more than one or no incom-
ing and outgoing edges, respectively, and each
of their in-between nodes ni+1, · · · ,ni+h−1 has
just one incoming edge from its previous node
and one outgoing edge to its next node, we com-
bine those h nodes into a single node inheriting
only the incoming edges of ni and the outgoing
edges of ni+h. Finally, each combined node is
annotated with the set of pose groups included
in the merged interval (see Figure 2 (d)).

4 Interactive Sequencing

In our editing interface, the user progressively
extends an animation sequence by repeatedly se-
lecting and appending one of the representative
poses to the animation such that each new pose
is connected to its previous pose by one of the
available motion paths in the given graph. Such
a combinatorial approach intrinsically limits the
range of possible motions, and does not allow
poses to be placed at arbitrary positions and ori-
entations, except for the starting pose.

In order to enable the user to adaptively compro-
mise between his/her intention and the allowable
range, we provide the user with a functionality
of quickly browsing through a large number of
connectable paths. Specifically, whenever the
user points to a new location to be examined,
our path browser immediately responds by dis-
playing an optimal path whose end is the nearest
to the input position. The responsiveness of this
interaction cycle is maximized by unrolling the
graph into a spatial tree for each new pose, and
then running a nearest-neighbor search for each
location query (instead of graph search).



Figure 3: (top) Spatial search trees of depths 1, 3, and 5 from the left. The dots and lines represent the
nodes and edges, respectively. (middle) Browsing through connectable motions with various
locations. Our path browser takes the pose and location of the blue character as its input,
and visualizes the trajectory of the optimal motion path as its output. (bottom) Accepting
one of the available paths synthesize smoothly connected motions along the path.

4.1 Search Tree

We unroll the graph into the space from the last
node for the current animation sequence within
a depth d, while creating a new tree node for
each unrolled graph node. Each tree node inher-
its the original information of its corresponding
graph node including the motion interval and the
indices of pose groups. Additionally, it is associ-
ated with the two-dimensional position and ori-
entation at which the character would be placed
and the time when the character would arrive.
Our spatial search tree is similar to the embed-
ded graph by Reitsma and Pollard [17]. How-
ever, our tree is repeatedly rebulit whenever the
animation is extended and covers a relatively
small region surrounding the last pose with a
small d, about 5 in our experiments, because we
use the tree for fast browsing of possible ani-
mation build-up rather than to evaluate motion
graphs.

Because the number of tree nodes grows expo-
nentially with respect to the depth d, brute-force
linear search for the nearest-neighbor nodes is

impractical (see Figure 3 (top)). Instead, we use
a well-known search algorithm in which a pre-
computed data structure called the cover tree ac-
celerates the search process in response to the
nearest neighbor query significantly [18]. In our
implementation, the cover tree is constructed
once for each new search tree, which takes a few
seconds of computation for tens of thousands of
tree nodes. Once the precomputation has been
done, each location query can be responded to
in an instant (see Table 1).

4.2 Path Browsing

Given a two-dimensional location p of a new
pose belonging to the k-th group, we first find
n closest tree nodes whose Euclidean distances
to p are within a radius r by using the cover
tree algorithm. In our experiments, we chose n
and r to be 5 and about half of the character’s
height, respectively. Then, only the nodes asso-
ciated with the k-th pose group are picked out
as candidates satisfying the user requirement. If
there remains only one or no candidates, we sim-



ply accept the candidate as the user selection or
ignore the user input, respectively. Otherwise,
given more than one candidate node, we choose
the temporally closest node, to which it takes the
shortest time from the last pose of the existing
animation, by comparing the times associated
with candidate nodes.

Once one of the tree nodes has been identified as
the user selection, we trace the tree back to the
root node while constructing the motion path in
reverse order such that the motion intervals from
the root node to the selected node are threaded
together as in ⟨[s1, e1], [s2, e2], · · · , [sd′ , ed′ ]⟩,
where the first and d′(≤ d))-th intervals are as-
sociated with the root and selected node, respec-
tively. We need to carefully adjust the first and
last (d′-th) intervals to their sub-intervals before
motion synthesis. For the first interval, the start
frame s1 should be updated as the next frame
of the last pose of the existing animation to sat-
isfy continuity. The end frame ed′ of the last
interval should be altered to belong to the user-
intended k-th pose group. Note that the last in-
terval [sd′ , ed′ ] may include such poses at several
different frames. We determine ed′ to be the first
frame belonging to the k-th group in favor of the
shortest extension without redundancy.

The adjusted motion intervals are then stitched
together to form a long, smoothly connected an-
imation sequence by transforming each interval
to be aligned with the end of its previous inter-
val, and blending poses around each pair of tran-
sition frames ei and si+1. As feedback on the
user input, we visualize the spatial trajectory and
temporal duration of this new sequence (see Fig-
ure 3 (middle) and (bottom)). If the user accepts
the result, we proceed to the next round of ani-
mation build-up by appending the new sequence
to the existing animation and reconstructing the
search tree from the last node for the new se-
quence. Otherwise, the user continues examin-
ing other connectable paths by moving the input
location until a satisfactory path is obtained.

5 Experimental Results

We implemented our interactive editing system
on a second generation iPad to provide the user

Figure 4: Boxing.

with an easy rapid interaction using the iPad’s
multi-touch screen. The user is allowed to se-
lect poses, add poses in the time line, browse
motion paths by moving new poses in the space,
and accept motion paths to extend his/her ani-
mation sequence, using only tap and swipe ges-
tures. In order to demonstrate the effectiveness
of our approach, we preprocessed captured data
of boxing and breakdancing into motion graphs
and pose clusters, and interactively built up new
animation sequences under the predefined sce-
narios involving spatial, temporal, and postural
requirements simultaneously. Please refer to our
accompanying video for visually examining the
process of building up animation sequences in
detail.

Boxing data comprises a broad variety of com-
binations of footwork and punches performed
by a professional boxer. We arranged three
punch targets of different colors at arbitrary lo-
cations, and specified an animation scenario re-
quiring the character to approach and throw
punches at those targets in a specific order (see
Figure 4). To confirm whether each target was
hit or not, we changed its color to gray if its dis-
tance from the character’s hand became less than
a threshold distance, about half of the charac-
ter’s arm length. The user was able to quickly
link available motions together to satisfy the
given requirements in a few minutes, while flex-
ibly controlling the complexity and length of the
intermediate motions between each pair of suc-
cessive targets as intended.



Figure 5: Breakdancing.

Breakdancing data captures a free-style per-
formance of a professional dancer, which in-
cludes various combinations of footwork and
upper body gestures. As in the boxing anima-
tion, we placed three targets of different colors
at arbitrary locations on the floor, and required
the character to bend its body to touch its toes
at the target locations as if trying to pick up
the targets (see Figure 5). Because the varia-
tion of the poses were more wide and dynamic
than with the boxing, the frequency of allowable
transitions between similar poses became lower,
producing the longer motion intervals associated
with graph nodes in average. As a result, the mo-
tion paths available in our search trees were gen-
erally very complicated and sparsely distributed
in the space, which makes precise control over
animation sequences challenging. However, the
user successfully achieved the goal through a
few number of trials and errors with the help of
our location-based browsing interface.

6 Conclusion

We have presented a new approach to animation
authoring using graph representation of captured
motion data in which the user is able to pro-
gressively extend his/her animation sequences in
specific scenarios. In comparison with the exist-
ing approaches that mainly focus on automatic
optimization over every available motion path,
our approach delegates the global composition
of animations to the user by allowing the user

to browse through locally connectable motion
paths to the existing sequences and to choose the
best paths to extend the animations. Whenever
our path browser receives the desired location
and pose, it efficiently finds a locally optimal
path ending with the pose at the nearest location
and displays its spatial trajectory and temporal
duration, which enables the user to quickly and
flexibly choose among a diverse array of options
to meet spatial, temporal, and postural require-
ments.

One of the major drawbacks of our approach
is that an animation sequence can only be ex-
tended or shrunken at the end. The insertion or
deletion in the middle of a sequence would sig-
nificantly transform the latter part of the orig-
inal animation, possibly breaking the flow with
the surrounding environment or the planned sce-
nario. Also, as an intrinsic limitation of the
combinatorial approach, it is often impossible to
precisely fulfill the spatial and temporal require-
ments, such as hitting a target at a specific time,
within the range of possible resequencing. For
more precise control, we regard it as a promis-
ing future direction to incorporate well-known
techniques for deforming motion paths into our
framework [19].
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