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Figure 1: Morphable crowd models synthesize virtual crowds of any size and any length from input crowd data. The synthesized crowds can
be interpolated to produce a continuous span of intervening crowd styles.

Abstract

Crowd simulation has been an important research field due to its
diverse range of applications that include film production, mili-
tary simulation, and urban planning. A challenging problem is to
provide simple yet effective control over captured and simulated
crowds to synthesize intended group motions. We present a new
method that blends existing crowd data to generate a new crowd
animation. The new animation can include an arbitrary number
of agents, extends for an arbitrary duration, and yields a natural-
looking mixture of the input crowd data. The main benefit of this
approach is to create new spatio-temporal crowd behavior in an in-
tuitive and predictable manner. It is accomplished by introducing
a morphable crowd model that allows us to encode the formations
and individual trajectories in crowd data. Then, its original spatio-
temporal behavior can be reconstructed and interpolated at an arbi-
trary scale using our morphable model.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Animation—Virtual reality

Keywords: Computer Graphics, Computer Animation, Crowd
Simulation, Data-Driven Animation, Human Motion

1 Introduction

Crowd simulation has intensively been studied as an important re-
search theme in computer graphics. Various approaches are avail-
able to describe realistic crowd scenes in detail and thus they have
been frequently employed in film production, military simulation,
and urban planning. For instance, the rule-based model is effective
for generating global crowd motions such as flocking. Each char-
acter in the model, called agent, is equipped with a set of rules to
drive autonomous behaviors reacting to its perceived environmental
stimuli. Dynamically evolving flow fields also allow the systematic
guidance of agents based on appropriate mathematical models. The
realistic behavior of a human crowd can also be recorded and re-
produced via data-driven approaches.

A crowd of pedestrians exhibit a particular “style” depending on
where/when the crowd is observed and the characteristics of in-
dividuals. For example, marching army soldiers would exhibit a
regular grid pattern moving in a steady speed, while pedestrians
rushing to the train in a crowded subway station would manifest ir-
regular patterns rapidly changing over time. The style of a crowd
is somewhat ambiguous, but might be characterized by various fac-
tors, such as the density of a crowd, the regularity/persistency of
formations, the distribution of individual velocity profiles, the style
of individual locomotion, the reaction of individuals to potential
collision, and so on.

Synthesizing a particular crowd style or having a control over crowd
styles is a challenging problem. Existing crowd simulation algo-
rithms allow us to tune parameters to change some aspects of crowd
simulation. However, the scope of style control is inherently re-
stricted by the parameters of governing rules or equations. Data-
driven approaches alleviate this problem by enabling virtual crowds
to imitate a crowd of real creatures. The example data are often ac-
quired from video that records real crowd behavior. However, find-
ing/chreographing a specific crowd style is cumbersome and chang-
ing the style of a recorded crowd is yet another challenge.

One potential approach is a morphing technique, which enables us



to generate intermediate representations from multiple data. Mor-
phing/interpolation techniques have received great attention as they
can generate a continuous span of convincing intermediate rep-
resentations in many computer graphics applications, including
shape design, image processing, and character motion synthesis.
Nonetheless, blending multiple data in our context is still a big chal-
lenge because we cannot easily establish meaningful correspon-
dence between crowd animations, which are often significantly dif-
ferent both in the spatial arrangements and locomotion styles of
individual agents. Even if we could match and align spatial distri-
butions of multiple crowds in some ways, simply interpolating the
associated agents’ positions at each time step does not maintain the
crowd styles inherent in the source data, and thus could result in
unexpected spatio-temporal crowd behavior.

We present a novel method of blending crowd animations into a new
crowd that exhibits the intervening formations and motion styles at
an arbitrary scale. Our blending process begins by introducing a
morphable crowd model that encodes the distribution of neighbor-
hood formations and locomotion trajectories. A new crowd is then
synthesized to match the distribution. As a result, our simulation
algorithm can generate an arbitrary number of agents that consis-
tently preserve their local group behavior over an arbitrarily long
duration of time.

2 Related Work

Crowd simulation has a long history in computer graphics. Numer-
ous approaches have since investigated achieving high complexity
and realism in virtual crowds. These include locally reactive de-
cision making [Guy et al. 2009; Pelechano et al. 2007], guiding
potential fields [Treuille et al. 2006], a hybrid of agent-based and
continuum approaches [Narain et al. 2009], hierarchical clustering
approach for real-time simulation [Sud et al. 2007b], secondary
action [Lerner et al. 2009], human perception [McDonnell et al.
2009], navigating using adaptive roadmaps [Sud et al. 2007a], and
quality evaluation [Mubbasir Kapadia 2009] to name a few recent
work. We refer readers to [Thalmann et al. 2007] for a comprehen-
sive survey on the state of the art in this important research topic.

On the other hand, the data-driven approach to crowd simulation
has recently emerged as a new way of reproducing complex crowd
behaviors mimicking real crowds. The associated data are usually
acquired by recording a bird’s eye view of crowds with a camcorder,
and then identifying the two-dimensional trajectories of moving
subjects, either manually or semi-automatically. Lee et al. [2007]
trained a group behavior model from such crowd data, which made
each virtual agent react to its perceived state by referring to the cap-
tured behavior in similar situations. Lerner et al. [2007] addressed
the same problem taking a slightly different approach to motion
estimation by defining their matching function. Lai et al. [2005]
spliced group motion clips to synthesize a new group motion. Sev-
eral other researchers employed crowd motion data as a means
to calibrate and validate their own group behavior models [Pettre
et al. 2009]. Instead of relying on the moving trajectories, Courty
et al. [2007] extracted a time series of velocity fields from crowd
videos, and then synthesized a new crowd animation by advect-
ing virtual agents along the concatenated sequence of such velocity
fields. Peters et al. [2009] analyzed a size of groups, a shape of align
and a splitting/merging behavior from a crowd scene or a video to
demonstrate clustered pedestrians. Recently Lerner et al. [2010]
proposed crowd evaluation approach based on real crowd data and
it showed similarity between simulated and real crowd quantita-
tively.

The data acquisition phase is a common bottleneck across these
data-driven methods, especially when the intended crowd scene re-
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Figure 2: A morphable crowd model.

quires a large diversity of crowd phenomena. The latest work of
pedestrian tracking in computer vision is promising to alleviate this
laborious process [Ali and Shah 2008; Andriluka et al. 2008]. An-
other interesting direction is to increase the reusability of crowd
motion data once acquired. Kwon et al. [Kwon et al. 2008] pre-
sented an approach to deforming and stitching group motions while
maximally retaining the neighborhood formations and moving tra-
jectories in the original data. Kim et al. [Kim et al. 2009] extended
the idea further to build an interactive multi-character motion edit-
ing system that copes with heterogeneous characters, a larger reper-
toire of actions, interpersonal interaction and temporal synchroniza-
tion.

Blending multiple motion clips increases the reusability of human
motion database. It allows a moderate number of clips to construct
a continuous space parameterized by controllable features such as
moving direction, target location, and emotional status [Rose et al.
1998; Kovar and Gleicher 2004]. Especially for a single charac-
ter motion, simple linear interpolation can yield a plausible mix-
ture of existing motions since we can easily establish the spatio-
temporal correspondences between example motions. However,
it is challenging to identify such correspondences between mul-
tiple sources of crowd data, because they usually have different
spatial and temporal features, including the number of individ-
uals, persistency of formation, regularity of spatial distribution,
and velocity/acceleration profiles. There have been crowd blend-
ing approaches on directing and controlling based on navigation
fields [Peters and Ennis 2009; Pettré et al. 2008]. These approaches
focus on controlling and blending simulation fields and steering of
crowd based on the fields. Patil et al. [2010] blended multiple input
sources such as procedural simulation, captured videos or interac-
tive user sketches. In this work, we introduce a sampling-based
approach to construct a morphable crowd model. The morphable
model encodes the spatial and temporal characteristics of exist-
ing crowd data and reproduces their plausible variations. Though
our work is technically based on an extension of data-driven ap-
proaches, its application is not limited to the data-driven domain.
Our algorithm can take input from any rule-based or flow-field sim-
ulation methods to generate inbetween styles.

Generative models have provided a systematic mechanism to syn-
thesize new motions from captured data, and enabled us to produce
motion variations while retaining an allowable range of style and
dynamics learned from given data. We try to characterize the sta-
tistical distribution of individuals to faithfully simulate observed
spatial arrangements. Similar motivation can be found in the recent
work of various fields in computer graphics. This includes design-
ing morphable textures in the parametric space spanned by texture
database [Matusik et al. 2005], generating a compact texture from
a large and globally varying image [Wei et al. 2008], factoring re-
peated contents within and among images [Wang et al. 2008].

Our work is related to the formation control of multi-vehicle sys-



Figure 3: Formation distribution. (Left) Randomly sampling the
formation of neighbors from the source crowd data. (Right) Forma-
tion samples are overlaid together to form a distribution.

tems in robotics, in that moving vehicles need to preserve their in-
tended spatial configurations over a long period. A diversity of ap-
proaches has been presented to accomplish this goal. Graph Lapla-
cian analysis has been employed to generate plausible interpola-
tion over a sequence of time-varying formations [Takahashi et al.
2009]. Graphics researchers have also introduced various kinds of
spatial constraints on moving agents for better control of coherency
in groups [Kamphuis and Overmars 2004], two-dimensional con-
figurations [Silveira et al. 2008], and three-dimensional shapes [Xu
et al. 2008].

3 A Generative Model of Crowds

Our algorithm learns a model of crowd movements from observed
data that consists of a set of two-dimensional moving trajectories
of individuals. Example data were acquired by either process-
ing crowd videos or running a simple rule-based crowd simulator.
Some synthetic simulation results were also used to demonstrate
various geometric formations and movement patterns.

Our crowd model describes how each individual agent behaves with
respect to its neighbors to form group formations and reproduce a
range of locomotion styles. Our crowd model is generative in the
sense that it is able to generate temporally extended, spatially larger
crowds that look perceptually similar to input crowd data (Figure 2).
Specifically, our crowd model consists of two sub-models: A for-
mation model that represents the distribution of neighborhood for-
mations and a trajectory model that describes how each individual
moves.

Existing data-driven methods [Lee et al. 2007; Lerner et al. 2007]
addressed a similar goal of reproducing a recorded crowd simula-
tion by learning a model from training data. Some of features for
model learning were discrete-valued and thus did not allow the in-
terpolation between feature values. Our work is distinguished from
previous approaches, because our main challenge is blending mul-
tiple crowd models. The features for model learning are carefully
selected such that we can generate a continuous span of inbetween
models.

3.1 Formation Model

A variety of group formations appear and disappear in crowds.
Some formations are persistent and some vary over time. Some
formations are regular and geometric, while others are random and
stochastic. Group formation is determined by the relative location
of neighboring individuals. Each individual observes the location
of its neighbors and decides its next movement to shape a forma-
tion.

Symbol Meaning

K The number of agents in the neighborhood
subscript k Neighbor index

N The number of samples in the distribution
superscript n Sample index

J The number of formation distributions
subscript j Distribution index

p ∈ R
2 Two-dimension location of an agent

p̄
n ∈ R

2 Average location over n
p̂k ∈ R

2 Permutation of pk

P A set of two-dimensional agent locations
N A set of agents in the neighborhood
Dj A formation distribution
T A trajectory model

Figure 4: Mathematical notation
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Figure 5: The formation model of a crowd of agents lining up in
two rows. Agents are shown as black dots in the middle. We found
six formation distributions from the crowd (J = 6).

Our formation model is built from a collection of neighborhood for-
mations observed in the training data. We collect formation sam-
ples within a specified radius R of each individual (Figure 3). In
our experiments, the radius is determined as the average distance
to its fourth nearest neighbor. Each sample may have a differ-
ent number of agents within the radius and thus is represented as
a tuple of two-dimensional points (p1, · · · ,pK), where K is the
number of neighboring agents in the sample and pk ∈ R

2 is the
two-dimensional relative location of the k-th neighbor (Figure 4
describes the mathematical notation).

We sort formation samples into groups to elucidate the underlying
structure of the formation distribution. For example, a crowd of
agents in Figure 5 line up in two rows and the formation is near-
regular and persistent. The neighborhood formations sampled from
the crowd tend to be classified into six groups that characterize the
crowd formation. Each group constructs a formation distribution.

We use a simple, incremental method to cluster formation sam-
ples. Assume that a set of samples are already classified in several
distributions and we want to add a new sample. If the new sam-
ple is sufficiently close to any of the distributions, we insert the
sample into the closest distribution. Otherwise, we create a new
distribution to include the new sample. The key to the clustering
algorithm is to decide if a sample can be included in a distribu-
tion. Each sample includes a set of unordered two-dimensional
points N = (p1, · · · ,pK). The new sample cannot be included
in a distribution, if it does not have the same number of points
as other samples already belonging to the distribution. Otherwise,



Figure 6: An illustrative example. Two-dimensional source images
are reconstructed from random samples and then linearly interapo-
lated. The inside (shaded in cyan and pink) of each reconstructed
image is determined by counting samples in the neighborhood of
a certain radius. The images in the second row were reconstructed
with the smallest radius and the images in the next rows with larger
radii.

we decide the order of the points to compare them with samples
{(pn

1 , · · · ,p
n
K) | n = 1, · · · , N} in the distribution. Let p̄k =

1

N

∑
n p

n
k be the average location of the k-th points in the samples.

To decide the order, we find the bipartite matching [Gibbons 1985]
between sample P and the ordered tuple of average locations. The
result of bipartite matching is the permutation (p̂1, · · · , p̂K) of N
that minimizes the squared distance E =

∑
k ‖p̂k − p̄k‖

2. The
distribution includes sample N, if E is below a specified threshold.
We repeat the sampling procedure until each distribution has suf-
ficient samples. The number of samples depends on the regularity
of formations. Random/clustered formations tend to require more
samples than regular/persistent formations. For simplicity, we set
N = ⌈300/K⌉ for each distribution throughout the experiments.
This number is conservative for the worst case. Most of examples
work well with fewer samples. A distribution that does not include
a significant (at least 10%) portion of the samples is removed, since
it could be outliers.

3.2 Trajectory Model

Our trajectory model is built from a collection of short trajectory
segments randomly sampled from source crowd data. Each segment
is a sequence of two-dimensional points that represents the trace of
an individual for a short interval (one second in our experiments).
These short segments are strung together to generate agent trajecto-
ries in synthesized crowds. In our experiments, we conservatively
sampled 300 samples from each data set. We maintain the segments
in a directed graph similar to the one for human motion data [Lee
et al. 2002] to avoid abrupt velocity changes in synthesized trajec-
tories. The segments correspond to the graph nodes. Transitioning
from one segment to the other is allowed if the corresponding nodes
are connected by a directed graph edge.

The graph construction begins by examining each pair of seg-
ments and then creating connecting transitions where their veloc-
ities match well. Specifically, we create a transition from node i

to j if dij = ‖vend
i − v

begin
j ‖ is below a certain threshold, where

v
end
i ∈ R

2 is the average velocity on trajectory i for the last 0.2

seconds and v
begin
j ∈ R

2 is the average velocity on trajectory j for
the first 0.2 seconds.

The trajectory graph thus obtained should be further processed to

r

R

12
ˆ pp =

21
ˆ pp =

33
ˆ pp =

R

d
pp +1p

2p

Figure 7: Consistency checking. (Left) The neighborhood
(p1,p2,p3) is an unordered tuple of points shown as red squares.
The re-arranged neighborhood (p̂1, p̂2, p̂3) is consistent with the
distribution if the samples are densely distributed around each point
in the neighborhood. (Right) Black dots represent a formation of
agents and a new agent p+ pd, shown as a red square, is added to
the formation. To do so, the neighborhood of the new point, shown
as a pink disk, should be consistent with the formation model and all
agents in the pink disk should also have consistent neighborhoods,
shown as blue disks.

prune ill-connected segments and avoid dead-ends. We first pruned
segments with fewer than ten out-going transitions to ensure the
diversity and flexibility in steering agents. We run a SCC (strongly
connected component) algorithm to identify the largest SCC and
prune segments that are not included in the SCC to avoid dead-
ends. [Lee et al. 2002].

4 Crowd Synthesis

Once our morphable model is constructed from source data, we
can generate a new simulation that includes an arbitrary number
of agents, extends for an arbitrary duration, and looks similar to the
source data. In this section, we describe two algorithms. One algo-
rithm generates a static formation of an arbitrary number of agents
that serves as the initial configuration of a synthesized crowd. The
other algorithm makes every agent to proceed by the length of a tra-
jectory segment selected from the trajectory model. Although we
modeled the spatial formations and individual trajectory patterns in
two separate models, our synthesis algorithm enforces a new simu-
lation to exhibit both spatial and temporal traits of the source data
simultaneously.

4.1 Plausible Formation

The formation model represents a collection of probability distribu-
tions of plausible local arrangements, which are high-dimensional.
Both algorithms need to check if any given static formation of
agents is consistent with respect to our formation model within a
certain threshold. The formation is consistent if the neighborhood
of each individual agent is consistent with any of the distributions.
The threshold is defined implicitly by checking how densely the
samples are populated around a given configuration in the high-
dimensional space.

Illustrative example. We begin with a two-dimensional illustra-
tive example. In Figure 6, we have two black-and-white images
and 1000 points are sampled from the inside of each image. Each
image can be approximately reconstructed from the sample points.
A point is inside of the reconstructed image if its neighborhood of
a certain radius includes more sample points than a user-specified
threshold. Figure 6 shows how the radius affects image recon-
struction. The larger radius makes the reconstructed images di-
late. Similarly, we reconstruct a high-dimensional distribution of



local arrangements from samples. The region of plausible arrange-
ments are determined by adjusting the radius. This sampling-based
approach makes the interpolation between high-dimensional func-
tions easy, which is very important for crowd interpolation in the
next section.

Checking Consistency. Let {Dj | j = 1, · · · , J} be a collection
of formation distributions in the formation model. Consider agent
p and its neighborhood N = (p1, · · · ,pK) in the crowd within
radius R. We want to check if neighborhood N is consistent with
respect to distribution Dj = {(pn

1 , · · · ,p
n
K) | n = 1, · · · , N}

for any j. At first, if the number of agents in the neighborhood
is equal to the number of samples in the distribution, we compute
the permutation (p̂1, · · · , p̂K) of N, such that

∑
k
‖p̂k − p̄k‖

2 is
minimized. The neighborhood is likely to be formed from the dis-
tribution if pn

k ’s are densely populated around p̂k for each k (Fig-
ure 7(left)). The density is measured by counting the number of
distributed points pn

k within radius r from p̂k, denoted by Cr(p̂k).
In our experiments, we set r = R/5. N is consistent with Dj , if
the density is above a specified threshold for all k. The threshold
is initially set by (µk − 2σk), where µk = 1

N

∑
n Cr(p

n
k ) is the

average density and σk is its standard deviation. In order to support
incremental construction/development of a group formation, partial
arrangement N′ = (p1, · · · ,pK′) for K′ < K passes the consis-
tency checking if its permutation satisfies the density condition.

4.2 Simulation Algorithms

Algorithm 1: Generating the initial formation of a crowd

Data: The number N of agents to be generated
A collection of formation distributions Dj

Result: A set of agent locations P

1 P← {(0, 0)};
2 for i← 1 to N do
3 trial← 0;
4 Reset the threshold for consistency checking;

5 while a new location is not selected do
6 p← pick an agent from P;
7 pd ← pick a relative location from Dj for any j;

8 if Consistent ({Dj},P ∪ (p+ pd)) then
9 P← P ∪ (p+ pd);

10 break;

else
11 trial← trial +1;
12 if trial > max trial then
13 Loosen the threshold for consistency checking;
14 trial← 0;

Initial Formation Generation. Our formation generation algo-
rithm incrementally adds new agents to the crowd one-by-one, until
we have a desired number of agents (Algorithm 1). The candidate
location (p+pd) is selected by randomly picking an agent p from
the crowd and displacement pd from its formation distributions
(lines 6–7). This candidate location is accepted if it is consistent
with the formation model (lines 8–10). Specifically, the neighbor-
hood Np+pd

of the new point should be consistent with Dj for any
j, and all of its neighbors affected by the new point should have
consistent neighborhoods (Figure 7(right)). That is, Np′ should be
consistent for all p′ ∈ Np+pd

. If any of the neighborhoods is in-
consistent, the candidate is rejected and we iterate the procedure
with a new candidate. If many candidates are rejected in a row,

we decrease the consistency checking threshold by σk for all k,
so candidates can be accepted easily (lines 11–14). In our experi-
ments, max trial is usually 10 to 20 (line 12). The larger value of
max trial permits control that is more accurate at higher compu-
tational cost.

Algorithm 2: Crowd simulation

Data: A collection of formation distributions Dj

A collection of trajectory segments T
A set of agent locations P

Result: P is updated

1 Pnext ← ∅;
2 for i← 1 to N do
3 Reset the threshold for path warping;
4 p← pick an agent from P;

5 while a new location is not determined do
6 pnext ← pick a plausible trajectory from T to advance p;

7 if NoCollision (Pnext,pnext) and
Consistent ({Dj},Pnext ∪ pnext) then

8 P← P \ p;
9 Pnext ← Pnext ∪ pnext;

10 break;

else
11 if all plausible trajectories were tested then
12 Loosen the threshold for path warping;

13 P← Pnext;

Simulation. Once the initial crowd formation is obtained, we use
Algorithm 2 iteratively to advance the simulation. Each individual
agent selects a trajectory segment, which it moves along, from our
morphable model. The agent stores the trajectory previously taken
and its next trajectory will be selected from those that allow tran-
sitioning from its previous trajectory (line 6). The trajectory that
moves an agent from p to pnext is accepted, if it does not cause
any collision with other agents and is consistent with the forma-
tion model (lines 7–10). If all agents in the source data walked on
straight paths, our trajectory model would have only straight tra-
jectory segments and thus the simulated agents could be stuck at
obstacles. We allow each path to be warped linearly within a spec-
ified threshold to provide enhanced steering flexibility(Figure 8).
Initially, the threshold for path warping is set to zero. If no plausi-
ble trajectory is accepted (lines 11–12), we loosen the threshold for
path warping, so the simulation does not stall.

Acceleration technique. The density calculation is the computa-
tional bottleneck of the simulation algorithm. We divide the circular
range of a neighborhood into a 100 × 100 grid of cells, and pre-
computed the density Cr at the center of each cell. Then, the den-
sity computation at runtime can be performed very efficiently. We
also employed uniform spatial partitioning to improve efficiency of
neighborhood search in the consistency checking phase.

4.3 Hierarchical model

The clustered formation exhibits different traits at different scales.
In Figure 9, the individuals tend to form a small group of com-
panions aligning side-by-side at a fine resolution, while a number
of small groups are scattered randomly over a wide area. While
the fine-level formation is regular and persistent, the coarser-level
formation is random and varies over time. We can simulate such
a non-uniform group behavior by layering formation models in a
hierarchical manner.
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Figure 8: A trajectory segment can be warped to change its steering
angle and length within specified thresholds.

Figure 9: A hierarchical model.

Consider a two-level hierarchical model (DUpper
j ,DLower

j ,T). Let

Pl = {p
0
l ,p

1
l , · · · } be a small group of agents and a collection of

small groups {P1, · · · ,PL} form a clustered formation at a larger
scale. The groups are not necessarily of the same size. Without loss
of generality, we assume that the first agent p0

l of each group Pl

is the closest to the centroid of the group. The model (DUpper
j ,T)

at the upper-level governs the representatives {p0
1, · · · ,p

0
L} of the

small groups, while the model (DLower
j ,T) at the lower-level con-

trols the agents in each group. Note that the formation model

D
Upper
j should be scaled appropriately to take a small group as its

individual.

We discuss the generalization of Algorithms 1 and 2 to deal with
a hierarchical model with two levels. Cascading the algorithms
in a top-down manner actually allows the hierarchical composi-
tion of more than two levels. The hierarchical version of Algo-
rithm 1 begins with the upper-level model to seed new groups. The
representatives {p0

1, · · · ,p
0
L} are determined based on the upper-

level formation model D
Upper
j using the original version of Algo-

rithm 1. The lower-level model is then used to add more agents
{p1

l ,p
2
l , · · · } around the seed p

0
l of each group for all 1 ≤ l ≤ L

using the same algorithm.

The hierarchical version of Algorithm 2 works in a similar manner.
It begins by applying the original algorithm to the representatives
of the groups. It makes one representative agent from each group to
proceed by using trajectory model T while maintaining the arrange-
ment among the representatives with respect to the upper-level for-
mation model. Then, all the other agents in each group proceed to
keep up with their representative based on the lower-level model
(DLower

j ,T) using Algorithm 2.

5 Interpolating Morphable Crowds

A brute-force approach to interpolating multiple crowd styles is to
find the one-to-one correspondence between agents and then blend
their spatial locations for each time instance. This brute-force ap-

proach does not work for many crowd scenes, because it cannot
cope with differences in the number of agents, density, locomotion
styles/speed, and their formations. We instead interpolate multi-
ple morphable models to produce inbetween crowd styles. Mor-
phable model interpolation separates the spatial relation among
agents from their locomotion. This separation allows us to inter-
polate two major (spatial and temporal) aspects of crowd behav-
ior appropriately and recombine them in the synthesis phase. In
this section, we will first explain how to interpolate two morphable
models and then discuss further generalization to blend more than
two models.

5.1 Two-Way Blending

Given two morphable models (DA
j ,T

A) and (DB
j ,T

B), we want

to compute their linear interpolation (DC
j ,T

C) with weights t and
1 − t (Figure 10(left)). We blend two trajectory models by ran-
domly selecting pairs of trajectory segments, one from each model,
and interpolating them to produce new samples. We generate 300
samples for each intermediate model, the same as for the original
models.

Blending formation models is more involved, since each model
has a series of formation distributions to be blended. We first es-
tablish correspondences between distributions. Correspondences
are established between any pair of distributions D

A
j and D

B
j′ that

have neighborhood samples of the same size such that K(DA
j ) =

K(DB
j′). Note that the correspondences between distributions are

not one-to-one. A distribution in model A may have multiple coun-
terparts in model B and vice versa. It is also possible that a distri-
bution does not have its counterpart. In this case, we allow a cor-
respondence between distributions having different sample lengths
so that all distributions have at least one counterpart. For example,
in Figure 10, crowd A has a distribution of K = 2 but crowd B does
not have any of the same length. Then, our algorithm selects the
closest match of K=3 from crowd B.

Interpolating two corresponding distributions requires finer-level
correspondences between samples and points (Figure 10(right)).
Let p̄A

k and p̄
B
k be the average locations of the k-th points in the

samples of model A and B, respectively. Bipartite matching es-
tablishes the correspondence between the average points. Corre-
spondence between p̄

A
k and p̄

B
k′ implies that a set of k-th points in

the samples of model A matches a set of k′-th points in the sam-
ples of model B. Therefore, we find the point-level correspondence
between {pn

k |n = 1, · · · , N} of A and {pn
k′ |n = 1, · · · , N} of

B also using bipartite matching. Once the point-level correspon-
dences are established, we linearly interpolate corresponding points
to generate a continuous span of inbetween formation models.

5.2 Multi-Way Blending

Consider more than two morphable models to be blended and their
affine weights wm, where

∑
wm = 1. Multi-way blending of tra-

jectory models is similar to two-way blending. We randomly pick a
trajectory segment from each model and blend them with weights to
generate a new sample for the inbetween trajectory model. We re-
peat the sampling procedure until a desired number of interpolated
samples is collected.

Two-way blending relies on bipartite matching to establish corre-
spondences between formation models at multiple levels. However,
optimal matching does not generalize readily to deal with more than
two corresponding sets. For example, tripartite matching is a fa-
mous NP-complete problem. Instead of solving an optimal multi-
partite matching problem, we blend multiple models one-by-one,
applying bipartite matching repeatedly. The multi-partite matching
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Figure 10: Morphable crowd interpolation. (Left) The correspondence between distributions are established. (Right) Two corresponding
distributions are interpolated. The average points of groups match first to identify correspondence between groups. Then, points in each pair
of corresponding groups establish correspondences.

Style # of frames # of agents
# of agents

per frame
R(N = 4) # of clusters

Ants 1907 20 20.00 6.36 6

Chat 201 10 6.78 1.55 5

Stagger 700 24 4.96 4.52 3

Lining 600 17 7.75 2.33 9

Oneway 166 24 9.97 1.96 5

Spectator 201 16 15.55 1.32 4

Stroll 700 20 5.93 3.84 4

Aggressive 619 46 8.18 2.01 6

Army 200 100 100.00 1.72 1

Horizontal 200 80 80.00 1.72 3

Vertical 200 80 80.00 1.74 3

Two Horizontal 200 160 160.00 1.02 6

Two Vertical 200 160 160.00 1.02 6

Motion data Generative model

Table 1: Experimental data. Thirteen motion data were acquired
both from real and synthetic crowds.

thus obtained is approximate and dependent on the order of blend-
ing models. In our experiments, this approximate matching worked
well without introducing any noticeable artifacts.

6 Experimental Results

We demonstrate the power and flexibility of our morphable crowd
model through a variety of examples. Thirteen crowd samples were
acquired from either real or synthetic crowds (see Table 1). Each
crowd data were pre-processed to construct its generative model
and find matchings between formation models for crowds blend-
ing. They took about one minute to create a single crowd model
and establish correspondences between formation distributions on
a desktop PC equipped with Intel Core i7 CPU 860 2.8GHz and
4GB main memory. The computation time for each crowd model
is about the same. We exhibited some experimental results in our
demonstration video and the detailed timing analysis for these re-
sults was specified in the supplemental material.

Crowd Synthesis. Each crowd model can create crowd simulation
that includes many agents and extends for an arbitrarily long dura-
tion. We can observe similar spatial arrangements and locomotion
styles in the original and reconstructed data. The simulation algo-
rithm exhibits moderate run-time performance, allowing about two
hundred agents to be simulated at 10 fps on a single-threaded CPU.
The computation time increases almost linearly with the number of
agents. The simulation provides the moving path of every agent.
When we synthesize three dimensional character behavior from the
path, its facing direction and fullbody motion are estimated in a

similar manner done by Lee et al. [2007].

Path following. In Figure 11, a 5-by-5 regular grid of agents moves
following a user-drawn path on the ground. The color of agents is
green initially and changes gradually to pink as they are following
the path. The agents are governed by a formation model learned
from persistent, regular-grid formations. This example shows how
the formation model and the trajectory model interact with each
other. At a sharp turn, the agents outside the corner should walk
significantly faster than the agents inside the corner. Their trajec-
tory model was learned from straight walking data and thus does not
allow such variations in walking speed. As a result, the formation
breaks down naturally at sharp turns, but they quickly recover their
formation after the turn. Note that the global shape of the forma-
tion after the turn is different than their initial formation. Instead,
the recovered formation matches locally to the distribution of the
formation model. In this specific example, the agents quickly align
with each other in rows and columns after the turn.

Analysis. We performed a qualitative analysis based on a set of
statistical measures including the average speed, direction, den-
sity of agents, and the spatial randomness of their formation (Fig-
ure 12). Given two morphable models, Army and Stroll, a series
of inbetween models were generated as the blend weight varies lin-
early from zero to one. Ideally, all the statistics of the inbetween
models should vary linearly. We employed Ripley’s K-function
from spatial statistics to estimate the randomness, regularity, and
clustering of spatial distribution at three distance scales [Ripley
1981]. For any distance d, K-function is defined in our context
as K(d) = 1

λ
E(d), where λ is the average density of a crowd, and

E(d) is the average number of individuals within a distance d from
an arbitrary individual. If individuals in a crowd are distributed in
a completely random pattern, K(d) equals to πd2 for any d. Oth-
erwise, K(d) above or below πd2 indicates that the distribution
exhibits more clustered or regular pattern, respectively. The graphs
of the average speed, direction and density demonstrate that the
statistics vary as expected though they are not precisely linear. Spa-
tial randomness does not change in proportion to the blend weight.
It makes sense because an inbetween model tends to exhibit more
randomness in its spatial arrangements than the original models.

7 Discussion

Our morphable crowd model provides the user with an intuitive and
predictable control over various crowd styles. We built a parametric
style space from a collection of example crowds. A rich variety
of crowd styles can be easily created, blended, and combined in



Figure 11: Path following.
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Figure 12: Analysis of morphable model interpolation.

a crowd scene. Two primary sources of example data were rule-
based agent simulation and real crowd video. We can also think
of an artist-friendly approach, that is, to allow artists to design a
short animation of group behavior. Then, our system would be able
to create a large scale crowd animation that extends spatially and
temporally.

Deciding radius R is important to understand the structure of crowd
behavior. A large value of R allows us to capture large patterns
in crowd data to generate many formation distributions at higher
computational costs. With a small value of R, we could miss some
patterns. We had to make a trade-off between the representation
power and computational efficiency.

Regardless of the choice of the radius, there are some crowd behav-
iors our morphable model cannot capture faithfully. The video in
Figure 13 recorded a herd of gnus, which shaped a sparse forma-
tion at the beginning of the video. They came together gradually to
pass through a narrow passage. Our morphable model may capture
a mixture of dense and sparse formations, but cannot represent the
temporal variation of the formation. It is unclear if each individual
model should be powerful enough to capture temporally-varying
styles. An alternative approach is to represent the temporal varia-
tion as the interpolation of two morphable models.

Our morphable model has several limitations. Currently, we do not
take environment features into account except for collision avoid-
ance with obstacles. Incorporating environment features into model
learning would allow a wider variety of group behaviors as shown in
previous work [Lee et al. 2006; Yersin et al. 2009]. It would be pos-
sible to parameterize crowd styles based on environment features.
For example, interpolating passing-through-a-narrow-passage and
passing-through-a-wider-passage would generate a continuous span
of stuck-at-a-bottleneck behaviors. Simulating a very dense crowd
is cumbersome in our system. A hybrid approach combined with
a local collision avoidance model, such as Guy et al. [2009] and
Pelechano et al. [2007], might alleviate the difficulty.

Our morphable model would generalize to represent other unorga-
nized time-series data, such as Lagrangian particles for fluid dy-
namics simulation. It might be possible to apply our data-driven
method to fluid simulation. Fluid example data would be collected
through precise, time-consuming simulation and then morphable
fluid models would be learned from the example data. Using mor-
phable fluid models, it would be possible to reconstruct new fluid
simulation at an arbitrary scale and interpolate morphable models
to produce a span of intervening fluids.
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