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Abstract

Creating controllable, responsive avatars is an important problem in computer games and virtual environments.
Recently, large collections of motion capture data have been exploited for increased realism in avatar animation
and control. Large motion sets have the advantage of accommodating a broad variety of natural human motion.
However, when a motion set is large, the time required to identify an appropriate sequence of motions is the
bottleneck for achieving interactive avatar control. In this paper, we present a novel method of precomputing
avatar behavior from unlabelled motion data in order to animate and control avatars at minimal runtime cost.
Based on dynamic programming, our method finds a control policy that indicates how the avatar should act in
any given situation. We demonstrate the effectiveness of our approach through examples that include avatars

interacting with each other and with the user.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Three-Dimensional Graphics and Realism]:

Animation, Virtual reality

1. Introduction

Realtime animation and control of three-dimensional avatars
is an important problem in the context of computer games
and virtual environments. Recently, large sets of motion cap-
ture data have been exploited to provide increased realism in
interactive applications as well as off-line animation produc-
tion. Creating lifelike motion of avatars requires many com-
ponents: acquiring a rich set of avatar behaviors that appear
natural, representing the behaviors in a connected way for
seamless animation, and giving the user control over those
behaviors. We are interested in the last of these: selecting ap-
propriate behaviors so that the avatar responds interactively
to user commands.

A set of avatar motions has often been represented as
a directed graph that encodes connectivity between behav-
iors (e.g., squatting can be followed by jumping). Combined
with statistical models, such as Markov processes and hid-
den Markov models, this graph-based representation com-
bines flexibility in an avatar’s behavior with the ability to
control the avatar’s actions. However, applying this approach
to interactive avatar control is challenging because the graph
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Figure 1: The realtime match simulation is created using
motion data captured from a single performer who shadow-
boxed. Shadowboxing is sparring with an imaginary oppo-
nent as a form of training. From motion data, our control-
lable animated boxers learned several behaviors to interact
with each other and interact with the user.

must be very large in order to accommodate a rich vari-
ety of natural human motions, and this large graph must be
searched at runtime to select appropriate motions interac-
tively.
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In this paper, we present a pre-computation method that
allows avatars to be animated and controlled interactively
from a large collection of human motion data at minimal run-
time cost. Our method tabulates the utility of taking different
actions in any given state so that an appropriate sequence of
actions can be found efficiently using table lookup. Our ap-
proach is based on dynamic programming which allows us
to produce a control policy (or behavior) for a given state-
action model. We compute a small collection of control poli-
cies that are used to control the motion of our avatars.

There exist a number of path planning and state-space
search algorithms that find a path when start and goal states
are given. Our approach is significantly different from those
algorithms. Instead of finding a point-to-point path, we find
a control policy that indicates how the avatar should act
in any given situation. Once the policy is computed at a
preprocessing phase, our avatar can find a sequence of ac-
tions to the goal very efficiently at runtime. Our approach
is resolution-complete in the sense that the optimal (with an
infinite-horizon delayed reward cost function) control pol-
icy can be found at a given resolution and range of the state
space.

We demonstrate the realtime capability of our approach
through examples that include animated avatars interacting
with each other and with the user in a dynamic environment.
The user can have direct and immediate control over the mo-
tion of the avatar. Our approach is relatively easy to imple-
ment and can be applied to a wide variety of human activ-
ities. For our experiments, we selected a domain of human
motion which involves significant physical interactions (see
Figure 1).

2. Background

Animation and control of three-dimensional synthetic char-
acters has been an active research topic in computer
graphics for decades [BG95, Blu98, BC89, NZB00, PG96].
More recently, attention has been given to data-driven ap-
proaches using motion capture data. The use of a mo-
tion capture system provides an easy solution to inter-
active avatar control simply by transferring the move-
ments of a performer to an animated avatar in realtime. A
number of researchers explored puppetry techniques that
map a motion from the performer to the avatar, which is
usually of a different size and proportion than the per-
former [BHG93, DYP03, MBT96, SHS98, SLSGO1]. This
paper focuses on controlling avatars without any special
equipment for user interface.

Statistical models have been frequently used to capture
the underlying structure of a large collection of motion data.
Several researchers have explored methods for introducing
statistical variations into motion [BS97, PB00, SBS02]. A
more popular approach is to exploit PCA dimensionality
reduction for simplifying the data, clustering for grouping

similar motions, and a Markov process model for allowing
transitions between clusters. The transitions between clus-
ters yield a directed graph that is often represented as a tran-
sition table. Brand and Hertzmann [BHOO] use a variation
of hidden Markov models to generalize motion data and in-
troduce stylistic variations into motion. Galata and her col-
leagues [GJHOI1] use variable length hidden Markov mod-
els to allow the length of temporal dependencies to vary.
Bowden [Bow00] uses piecewise non-linear principle com-
ponent analysis with a Markov chain to compactly represent
motion data. Molina-Tanco and Hilton [MHOO] developed a
PCA- and clustering-based system that identifies a sequence
of motion segments interpolating user-specified keyframes.
Li et al. [LWSO02] adopted linear dynamic systems to pro-
vide better approximation to motions within clusters and in-
troduce small variations into motion dynamics by perturb-
ing the parameters of linear dynamic systems. The statistical
models of Kim et al. [KPS03] also make use of k-mean clus-
tering and a transition graph to synchronize dance motions
with music.

Several research groups have explored techniques for syn-
thesizing new motions by cutting pieces from existing mo-
tion data and reassembling them in a novel order. This pro-
cess is facilitated by a graph representation that allows tran-
sitions between individual motion frames rather than clus-
ters of motions. Frame-level transition methods avoid the
risk of smoothing out fine details of motion during PCA di-
mensionality reduction and clustering, but create a bigger
transition graph that makes avatar control even more chal-
lenging. Pullen and Bregler [PB02] segmented motion data
into small pieces and rearranged them to meet user-specified
keyframes. Kovar et al. [KGP02] generated a graph struc-
ture from motion data and employed the branch and bound
algorithm to control an avatar to follow a sketched path.
Arikan and Forsyth [AF02] created a hierarchy of graphs and
employed a randomized search algorithm for synthesizing
a new motion subject to temporal and position constraints.
Both algorithms are intended to find a global solution and
may not be suited for interactive control. Lee et al. [LCR*02]
use a local on-line search algorithm which is demonstrated
to generate 5 to 8 frames of avatar motion per second when
the length of time the avatar looks ahead is moderately lim-
ited. However, this performance is still far from realtime in
an environment with multiple characters. They also noted
that graph search can be quite efficient if the graph is em-
bedded into a specific environment and thus the flexibility of
the avatar’s motion is limited. Choi et al. [CLS03] generated
a graph representation of motion embedded into a cluttered
environment from motion data that is captured in a differ-
ent (usually empty) environment. This environment-specific
graph facilitates creating biped locomotion through a com-
plex environment with obstacles. Arikan et al. [AFOO03]
showed that motion synthesis from a graph structure can be
cast as dynamic programming. Our work is built upon this
previous work and aims to pre-compute the graph search in
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every possible situation and tabulate the results to find an ap-
propriate sequence of motions at minimal runtime cost. Our
system is several orders of magnitude faster at runtime than
the aforementioned graph search and dynamic programming
algorithms.

Machine learning techniques have been extensively exer-
cised in computer animation. Ngo and Marks [NM93] cre-
ate dynamic controllers of simple creatures using genetic
programming. Sims [Sim94] also exploits genetic program-
ming for simulating a virtual creature that can evolve its
morphology. Grzeszczuk et al. [GT95, GTH98] explored au-
tomatic learning techniques for animating dynamic mod-
els such as fish and lunar landers. These techniques were
based on control abstraction and neural networks. Faloutsos
et al. [FvTO01] employ Support Vector Machine (SVM) clas-
sifiers for identifying the “pre-conditions” under which dy-
namic controllers are expected to function properly. Arikan
et al. [AFOO03] use SVM classifiers to annotate motion
databases with intuitive keywords and allow users to de-
scribe a desired scenario with those annotations.

Reinforcement learning refers to a set of problems that in-
volve agents having to learn how to act in any given situation
through trial-and-error interactions with a dynamic environ-
ment. Excellent surveys can be found in [KLM96, SB9§]. A
number of variants of reinforcement learning have been used
in robotic control and path planning. Atkeson et al. [AMS97]
constructed a two-armed robot that learns to juggle a tapered
stick by hitting it alternately with each of two hand sticks.
Mataric [Mat94] presented a reinforcement learning method
to train a group of robots with a steerable wheeled base and
a gripper to travel, collect small disks, and transport them
to a destination region. Reinforcement learning is used rela-
tively little in computer graphics. Blumberg et al. [BDI*02]
created an autonomous animated dog that is trained to rec-
ognize acoustic patterns as cues for actions. They focused
on training proximate causality because that is suitable for
animal training from an ecological point of view.

Schodl and his colleagues investigated a variety of search
algorithms for creating video textures [SSSE00] and ani-
mating video sprites [SEO1, SE02]. For scripted animations,
they suggested beam search and repeated subsequence re-
placement that search a path through state spaces given start
and goal configurations. They suggested a reinforcement
learning technique known as Q-learning for interactively
controlling video sprites to animate following a specified
path. Q-learning is the most popular reinforcement learning
method, but often suffering from excessive memory usage.
We are interested in creating more complicated human-like
characters that hit and react, and employ a simpler dynamic
programming method that requires less memory.

Our work is related to data-driven pre-computation
methods in global illumination and dynamic deforma-
tion. A number of researchers have explored techniques
to pre-compute global radiance transfer effects over sur-
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faces in a scene and tabulate them to render the
scene quickly at any viewpoint in a variety of lighting
conditions [NRHO03, SHHS03, SLSS03]. James and Fata-
halian [JFO3] pre-computed the dynamics of deformable
models to facilitate realtime simulation. They allowed a lim-
ited form of user interaction in order to simplify the dimen-
sionality of the state-action space.

3. State-Action Model

Our state-action model assumes an avatar that has a discrete
set of states S and actions A, and a target that also has a
discrete set of states E. The entire system is modelled as a
state-action pair {(S,E),A}. At each step of a simulation,
an avatar in the current state chooses an action. The action
changes the states of the avatar and the target. This pro-
cess is Markovian because the avatar’s decision as to how
to act depends only on the current state. To learn behaviors
effectively, it is very important to have a low-dimensional
state-action space with good discretization. Both human mo-
tion and target states are high-dimensional and continuous
in general. A simplified model of the system must be pro-
vided to make precomputation practical. In this section, we
describe how to construct a discrete state-action model in a
preprocessing phase.

Our representation of human motion largely follows that
of Lee et al. [LCR*02], which forms a directed graph with
its nodes corresponding to motion frames and its edges cor-
responding to connecting transitions between frames. This
representation can be automatically constructed from ex-
tended, unlabelled sequences of motion data by identify-
ing similar frames and creating transitions between them.
The construction method of Lee et al. creates a relatively
small number of frames with multiple out-going transitions
and leaves many frames with a single out-going transition,
because additional transitions are allowed only at discrete
events (e.g., the foot is about to touch or leave the ground).
The set of avatar states S includes all frames that have mul-
tiple out-going transitions. Consecutive frames with a single
out-going transition are collapsed into an action in A. With
this definition, a state in S represents a static pose of the
avatar and taking an action results in a transition from one
state to another (see Figure 2(c)).

We are particularly interested in controlling avatars in a
dynamic environment with moving tagets such as a moving
target to punch and a ball to follow and hit. A discrete set of
targets E forms a grid of locations. It is convenient to repre-
sent the grid with respect to a polar coordinate system that
is centered at the location of the avatar. The dimension and
range of the grid depends not only on the geometry of the en-
vironment but also on the type of behavior to be learned. In
our boxing example, we consider two behaviors: “approach-
the-target” and “throw-punches-at-the-target” (see Figure 3).
Computing the latter requires consideration of a relatively
small region of the entire state space within arm’s length,
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Figure 2: The state-action model of avatar motion. (A) The
motion data initially consists of a number of motion clips
containing many frames. Each frame represents a pose of
the avatar. (B) Many frame-to-frame transitions are created
to form a directed graph. (C) Frames with a single out-going
transition are collapsed. The simplified graph represents a
discrete state-action model (S,A) of avatar motion, where
the nodes of the graph correspond to states S and the edges
correspond to actions A. (D) Target states are discretized
into grids and associated with nodes.

and the region must be three-dimensional to accommodate
the X, y, and z-coordinates of the target. In contrast, comput-
ing the approach behavior requires a two-dimensional state
space because the height of the target is not necessary, and
the region of interest is larger to allow tracking of a target at
an arbitrary location. In theory, the entire (perhaps infinitely
large) state space should be considered to find the optimal
path if the target can be located arbitrarily far away. In prac-
tice, we do not need to search the entire space exhaustively
because search in a partial region around the avatar gives a
good approximate path. The resolution of the grid depends
on the expected precision of control. For example, the punch
behavior should be computed with a fine grid to control the
direction of the punch precisely, while the approach behav-
ior needs a relatively coarse grid to provide a rough direction
toward the target.

4. Precomputing Control Policies

The graph representation of motion data provides the avatar
with a broad variety of action choices, and the avatar must
select one action a € A at each step of the simulation based

Figure 3: The state space of a moving target is discretized
differently for two behaviors: (Left) A grid for “approach-
the-target” is two-dimensional, omni-directional, and rel-
atively coarse. (Right) A grid for “throw-punches-at-the-
target” is three-dimensional and dense. It covers a rela-
tively narrow and small region around the avatar where the
avatar’s punches reach.

on the current state (s,e¢) € S x E. Finding an optimal action
involves a search through the exponentially-growing tree of
actions that can move the avatar through the state-action
space. This search is the primary bottleneck limiting interac-
tive avatar control. Our goal is to pre-compute which action
to take at any given situation in order to find an appropri-
ate action very efficiently at runtime. A naive approach is to
expand the search tree for every state-action pair {(s,e),a}
to evaluate the utility of taking action a at state (s,e). This
approach can be prohibitively slow (even as a preprocessing
step) for any environment and motion data of practical use.
The major reason for this sluggish performance is that large
portions of the state-action space are redundantly traversed
by a number of search trees rooted at different states. Dy-
namic programming provides an efficient solution for this
problem.

4.1. Formulation

Our approach was inspired by reinforcement learning that
is designed to allow autonomous agents to learn a partic-
ular behavior through trial-and-error experiments. On each
trial, the learner may receive a reward for taking an action.
Through repeated trials, the learner must discover which ac-
tions tend to increase the long-run sum of rewards in future
trials. In our boxing example, given target e, the boxer at its
state s has to choose an action from a set of actions immedi-
ately available to the boxer at that state. Taking one of those
available actions may not result in any immediate reward,
but rewards may be received later when the target is hit by
the punch. Taking those delayed rewards into account, the
boxer learns to choose a sequence of actions that maximizes
the sum of future rewards

G=Y7n, M

t=0
where discount factor 0 < vy < 1 gives a penalty for long-
delayed rewards in order to model the uncertainty of a dy-

namic environment and to make the infinite sum converge.
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The basic idea of reinforcement learning is to create a
lookup table that indicates which action to take given a tar-
get. Each entry of the table, indexed by (s, e), represents the
expected discounted sum of reward that the avatar will gain
if it starts in that state and executes the optimal policy. It
has been shown that the optimal values for the entries can
be learned by randomly sampling states and applying a local
update rule to each state. This rule is intended to reflect an
immediate reward for taking an action from that state and
propagate rewards gradually to preceding states.

We describe here how to define reward functions for train-
ing our avatars. Reward R(s,e,a) is a scalar-valued function
of state (s,e) and action a. The reward function is specific
to a behavior to be learned. Typically, an impulsive reward
signal is received at a specific time instance if some condi-
tions are satisfied. The reward function takes the maximum
of discounted signals over the duration of action a.

R(s.) = max (Y100 ). @

where I(¢) = 1 if a desired condition is satisfied at time ¢
(e.g., the punch lies on the target). Otherwise, I(t) is zero.
w(t) is a weight term. Some behaviors can be modelled to
provide a continuous form of reward signals, which leads to

lle() —eall
R(s,e,a) = max (y’w(t) exp(—T) , (3
where e, is the destination state that receives the maximal
reward. The learning process can converge more rapidly with
this form of the reward function.

4.2. Dynamic Programming

Computing a control policy is a simple iterative process of
sampling states and applying a local update rule to incre-
mentally refine values in the table. On each iteration, we
randomly choose a pose s of the avatar and a target e among
grid points. The avatar needs to decide which action to take
among a set of actions immediately available to the avatar
at state s. A greedy policy is to select the one that gains the
highest reward in one step. Taking action a brings the avatar
to state s’ and the target to a new location ¢’ (since the loca-
tion is represented with respect to a local moving coordinate
system). According to the greedy policy, the value at (s,e)
should be updated to reflect the immediate reward and the
value of the next state (s',e’), using the best available ac-
tion. This process is called value iteration in reinforcement
learning community and can be shown to converge to the op-
timal values. We repeat the process until all states have been
visited dozens of times.

Our updating rule is
V(s,e) := max (R(s,e,a) +VV(s’,e/)> , 4)

a
which asserts that taking action a at state (s,e) results in
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the transition to state (s’,¢’) and produces immediate reward
R(s,e,a). Reward R(s,e,a) is added to the discounted value
of the next state and the result is used to update V(s,e). ¢
is the duration of action a. Since ¢’ may not coincide with a
grid point, we approximate V (s’,e’) by linearly interpolating
values at adjacent grid points.

Our implementation of table V (s, e) produces a number of
small tables. Each of the small tables V;(e) is associated with
avatar state s and indexed only by target e (see Figure 2(d)).

5. Runtime Synthesis

Once the table has been filled with appropriate values, find-
ing a sequence of actions at runtime is straightforward.
Whenever the avatar is provided with more than one avail-
able action, the avatar selects the one that makes transition
to the state with the highest value. This simple greedy strat-
egy causes the avatar to act optimally at a given resolution
and range of the state space. If multiple behaviors are active,
the avatar must reconcile behaviors that produce different re-
ward values. We simply select an action that maximizes the
weighted sum of values from multiple behaviors.

To create lively avatars, randomness in choosing actions is
as important as optimality with respect to getting a reward.
In fact, real people often do not act optimally. An athlete
may deliberately choose different actions in similar situa-
tions, for example, in order to trick his opponents. To in-
corporate randomness into our system, we identify a small
number of preferable actions and then select one randomly
instead of choosing the best action.

6. Experiments

All of the motion data used in our experiments was captured
from a Vicon optical system at the rate of 120 frames/second
and then down-sampled to 15 frames/second for realtime
display. Motion capture data contains trajectories for the po-
sition and orientation of the root node (pelvis) as well as rel-
ative joint angles for each body part. Timing data was mea-
sured on an Intel Pentium IV 2.4GHz computer with 1Gbyte
main memory. Our controllable animated boxers are created
through following steps.

Data Acquisition. We recorded motions of about 8§ minutes
duration from a professional boxer. In the recorded data, our
subject shadowboxed alone in an empty environment. Shad-
owboxing is a popular self-training method of sparring with
an imaginary opponent to practice various combinations of
punches and footwork. Our subject performed about 20 dif-
ferent combinations of punches that included a left jab fol-
lowed by a right straight punch, a right uppercut followed
by a left hook, and so on. Most of combinations consisted of
two to four punches. He also performed assorted defensive
actions such as ducking, dodging, and blocking punches. To
avoid the introduction of unnatural transitions, we did not
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Figure 4: The distribution of effective hitting points. Front,
top, and side views are depicted.

provide our subject with any scenario or specific sequence
of punches, except to constrain the motion within the capture
region (5 by 5 meters). We recorded in long clips (about 90
seconds each) to allow our subject to perform natural transi-
tions between actions.

Data Annotation. Identifying contact with the environment
is important for generating good transitions between motion
segments and computing reward functions. Motion capture
data does not explicitly indicate when the feet and the ground
are in contact and when punches are effectively hitting an
imaginary target. Our system automatically annotates mo-
tion data with this information. As in Lee et al. [LCR*02],
feet are considered to be on the ground if one of their adja-
cent joints (either the ankle or the toe) is sufficiently close to
the ground and its velocity is below some threshold. Punches
can deliver power effectively when the direction of motion
of the fist and the forearm axis are parallel at the moment of
hitting. In our system, punches are considered to be effective
if the magnitude of the velocity vector of the fist projected
onto the forearm axis is above some threshold and the direc-
tions of these vectors are not opposite. The tip of the fist at
the moment of hitting is called an effective hitting point. We
found 788 effective hitting points in our data set (see Fig-
ure 4).

Graph Construction. We construct a directed graph from
motion data by adding connecting transitions between
frames. A transition from frame i to frame j is added if
poses at frame i and j— 1 are similar and the left foot is
about to leave the ground in both frames. The similarity be-
tween poses is measured by considering differences in joint
angles and velocities [LCR*02]. To avoid dead ends in the
graph, we find a strongly connected component in which ev-
ery frame can be reached from every other frame through
transitions [KGP02, LCR*02]. The strongly connected com-
ponent contains 6453 frames, which corresponds to about 7
minutes and 17 seconds of motion. Collapsing frames with
a single out-going transition leaves 437 frames and 27072
transitions. These frames and transitions form the discrete
set of states and actions of our animated boxers.

Reward Functions. Our boxers learned two behaviors:
“approach-the-target” and “throw-punches-at-the-target”.

The reward function for the former behavior is

r=max(y’exp(fH‘D(t)_de)), 5)
t 10

where p, is the 2-dimensional location of the target. Because
the character is approaching the target and not yet striking it,
p(t) is the 2-dimensional trajectory of the centroid of effec-
tive hitting points. The discount factor y is 0.97. All coor-
dinates are represented with respect to a (body local) polar
coordinate system. The circular region around the avatar of
2 meter radius is discretized into a grid of size 5 (distance)
by 13 (angle) (see Figure 3 (left)).

The reward function for the latter behavior is
r = max (W(t)w(t)) : (6)

where I(t) = 1 if the location of a fist is sufficiently close
to the target and the annotation at that frame indicates that
the punch is effective. Otherwise, I(¢) is zero. Parameter
w(t) <1 is the normalized velocity of the blow at the mo-
ment of hitting and is set equal to one for the fastest blow.
This function is associated with a 10 x 10 x 4 grid that is
overlayed on the bounding volume of effective hitting points
(see Figure 3 (right) and Figure 4). The bounding volume has
an angle range of -1.114 to 1.317 radians, a distance range of
29.7 to 129.3 mm, and a height range of 126.6 to 162.4mm.
The policy tables require 0.9 MB of storage space.

Computing control policies. We randomly sampled a mil-
lion of states (s,e) and applied the update rule to learn
the “approach-the-target” behavior. Running time to com-
pute this behavior was approximately one hour. The “throw-
punches-at-the-target” behavior required 5 million iterations
and 7 hours of computation time.

Animation and Control. Our first example in Fig-
ure S(middle) shows an animated boxer that tracks and
punches a standing target. The user can drag the target in-
teractively. The approach behavior is always active and the
punch behavior is activated only when the target is in the
bounding box of effective hitting points. Collision between
the hands and the target is checked at frames that have ef-
fective punches. When a collision is detected, the target re-
acts by deflecting in the direction of the punch by an amount
proportional to the velocity of the punch and then return-
ing slowly to its original position. The second example in
Figure 5(bottom) shows two animated boxers that spar with
each other. They are controlled by the same motion data and
control policies and consider the head of the opponent to be
their target to hit. Collision checking is done between the
hands and the upper body of the opponents. Reaction to the
collision is simulated by displacing the body segment con-
tacted by a punch in the direction of the blow using an in-
verse kinematics solver.

Performance. To evaluate the performance of our system,
we created 30 animated boxers sparring (see Figure 6). Our
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Figure 5: Controllable animated boxers that hit and react. (Top) Motion data was recorded in an empty environment. (Middle)
Our animated boxer learned to track and hit the target. (Bottom) Two animated boxers spar with each other:

Figure 6: Thirty animated boxers sparring.

system required about 251 seconds to create 1000 frames
of video images. Actually, rendering dominated the compu-
tation time. Our system required only 9 seconds to create
the same animation with video and sound disabled. In other
words, the motion of 30 avatars is computed and controlled
at a rate of more than 100 frames per second.

7. Discussion

We have presented a precomputation method that allows our
avatars to be animated and controlled interactively by con-
structing control policies from a collection of motion cap-
ture data. Our method finds an optimal (with an infinite-
horizon delayed reward cost function) control policy at a
given resolution and range of the state space. With a suf-
ficiently dense discretization of the state space, the com-
puted policy is able to find an optimal sequence of actions,
which can also be found by global search algorithms used in
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[AF02, KGP02]. The local on-line search algorithm used by
Lee et al. [LCR*02] trades off the optimality of solutions for
interactive performance. We achieved a similar trade-off by
finding a sequence within the resolution and range of a grid.
This results in restricting the search space.

For realtime interactive systems, using precomputed con-
trol policies has a significant advantage in performance over
local on-line search algorithms. Once the policy is com-
puted, motion synthesis at runtime can be extremely fast.
However, there is a downside to using precomputed policy.
The precomputed policy does not allow us to change opti-
mization objectives and parameters at runtime, which makes
it difficult to coordinate multiple goals.

The presented method is memory intensive. Computing
each behavior requires O(NM) storage space, where N is the
number of avatar states and M is the number of grid points.
Recent results in machine learning show that function ap-
proximators and adaptive resolution models can be used to
store large state spaces compactly [KLM96, SB98]. Moore
and Atkeson [MA95] reported that their adaptive-resolution
algorithm could learn policies in spaces of up to nine dimen-
sions. Learning in high-dimensional state spaces will allow
more convincing training scenarios such as learning policies
from sparring with an opponent instead of a static target.

We believe that our method can be generalized to a broad
variety of human motion other than boxing. A challenge of
this generalization is to understand the context of interac-
tions between avatars and an environment from unlabelled
motion data. The current motion capture systems can hardly
capture physical interactions and contacts precisely. In our
boxing example, we recorded motion data without any phys-
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ical target and identified effective hitting points later by auto-
matically processing the data. It should be possible to iden-
tify other types of physical or indirect interactions such as
gaze directions.

Collision detection and response provide an important vi-
sual cue for multiple character animation. We simply dis-
carded the physics of collision and chose to displace body
segments in contact somewhat arbitrarily for the purpose
of visualizing collision events. Zordan and Hodgins [ZH02]
used a physical collision model to compute the reaction
of simulated humans to impact. Incorporating this physics
based approach into realtime interactive systems is an inter-
esting area for future work.
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