
Group Motion Editing

Taesoo Kwon

Seoul National University

Kang Hoon Lee

Kwangwoon University

Jehee Lee

Seoul National University

Shigeo Takahashi

University of Tokyo

Figure 1: Battlefield. An existing group motion on the left is adapted to a significantly different environment on the right. In the middle, the
blue curves represent the original trajectories, and the white curves are the edited ones.

Abstract

Animating a crowd of characters is an important problem in com-
puter graphics. The latest techniques enable highly realistic group
motions to be produced in feature animation films and video games.
However, interactive methods have not emerged yet for editing
the existing group motion of multiple characters. We present an
approach to editing group motion as a whole while maintaining
its neighborhood formation and individual moving trajectories in
the original animation as much as possible. The user can de-
form a group motion by pinning or dragging individuals. Multi-
ple group motions can be stitched or merged to form a longer or
larger group motion while avoiding collisions. These editing op-
erations rely on a novel graph structure, in which vertices repre-
sent positions of individuals at specific frames and edges encode
neighborhood formations and moving trajectories. We employ a
shape-manipulation technique to minimize the distortion of rela-
tive arrangements among adjacent vertices while editing the graph
structure. The usefulness and flexibility of our approach is demon-
strated through examples in which the user creates and edits com-
plex crowd animations interactively using a collection of group mo-
tion clips.

CR Categories: I.3.7 [Three-Dimensional Graphics and Realism]:
Animation—Virtual reality

Keywords: Group Motion Editing, Crowd Simulation, Human
Motion, Character Animation

1 Introduction

Crowd scenes appear frequently in recent feature animation films
and video games. Typical examples include pedestrians walking in
the street, soldiers fighting in a battle, and spectators watching a
performance. State-of-the-art techniques in crowd animation make
it possible to synthesize convincing animations of virtual crowds by
simulating each individual that chooses its actions based on rules,
decision models, or force fields. However, these techniques often
require careful parameter tuning to achieve desired results and still
lack precise control of individuals. In practice, multiple runs of
simulation with different parameters on the same scene have their
own advantages and disadvantages. Achieving overall satisfactory
results often requires laborious trial-and-error. We propose an in-
teractive editing scheme that complements such simulation-based
techniques in a way that animators have direct control over ani-
mated crowd behaviors. Using our system, an animator can selec-
tively edit and combine some portions of the simulation results to
achieve globally satisfactory results.

Manipulating the motion of multiple characters by repositioning
only a few characters would facilitate the editing of large-scale
crowds consisting of hundreds or thousands of characters. In order
to provide the user with plausible and predictive outcomes, group
motion editing needs to preserve not only each individual trajectory
but also the group formation of individuals. Although a number of
methods have been developed for editing single character motions,
only a few of them addressed the interactive editing of multiple
character motions.

We represent a group motion as a novel graph structure, in which
each vertex represents the location of an individual at a sampled
frame. Connecting edges encode individual moving trajectories and
neighborhood formations. Given a graph structure, we employ a
mesh editing method [Igarashi et al. 2005] for manipulating group
motions. The user can deform a group motion and stitch two in-
dependent group motions while avoiding collisions between char-
acters/obstacles and maintaining the characteristics of the original
group motion data.

The practical usefulness and flexibility of our approach is demon-

strated by two examples; adapting an existing group motion along a
S-shaped path to a different environment with branched paths (see
Figure 1), and authoring a large-scale crowd animation in a com-
plex town environment by using a few short motion clips.

2 Background

Synthesizing realistic group motions has been extensively explored
by computer graphics researchers in the last two decades. Many
existing techniques employ agent models, in which each agent per-
ceives its own state and decides the following actions based on a set
of predefined rules [Reynolds 1987; Musse and Thalmann 1997;
Pelechano et al. 2005; Shao and Terzopoulos 2005]. Alternative
approaches directly model the global flow of crowds either by de-
signing velocity fields manually [Chenney 2004], or by specifying
the governing equations of the flow that continuously update the ve-
locity fields according to the distribution of crowds [Hughes 2003;
Treuille et al. 2006]. Recently, several researchers presented data-
driven methods of constructing group behavior models based on a
set of simulated group formations [Lai et al. 2005], or captured mo-
tion data of real human crowds [Lee et al. 2007; Lerner et al. 2007;
Courty and Corpetti 2007; Paris et al. 2007]. Although a number of
useful techniques exist for creating convincing group motions, few
approaches have been presented for editing existing group motions.

Motion editing has been an important issue in character animation
since the advent of motion capture technology. For animating char-
acters in various figures, environments, and scenarios in an intu-
itive manner, a variety of editing methods have been developed,
which allow motion clips to be manipulated with constraints [Gle-
icher 1997; Lee and Shin 1999], concatenated [Rose et al. 1996],
interpolated [Rose et al. 1998; Mukai and Kuriyama 2005], and re-
arranged [Lee et al. 2002; Kovar et al. 2002; Arikan et al. 2003].
Our goal is to provide users with a similar level of flexibility in
editing group motions.

Our approach is based on the recent studies on detail-preserving
shape editing [Igarashi et al. 2005; Sorkine et al. 2004; Lipman
et al. 2005]. Maintaining the local arrangement of vertices al-
lows users to intuitively manipulate two-dimensional and three-
dimensional shapes without severely distorting shape details. More
recently, this detail-preserving approach has been extended to edit
a sequence of deforming meshes [Xu et al. 2007].

3 Graph Construction

Our system allows multiple motion clips to be edited in a shared
timeline so that a large crowd animation can be created using many
tractable motion clips. A group of characters can be divided into
multiple groups, and multiple groups can be merged together to
form a larger group. A single group motion clip can be split into
multiple clips in the time domain, and multiple clips can be stitched
together to create a longer clip as well. Each motion clip can be
relocated in the timeline, and deformed/transformed to arbitrary lo-
cations and orientations in a virtual environment.

Each group motion clip consists of a set of two-dimensional moving
trajectories of individual characters. For the simultaneous manipu-
lation of the multiple trajectories while preserving spatial relations
among individuals, we build a graph structure in which edges con-
nect the vertices sampled from individual moving trajectories, both
temporally and spatially. Specifically, a graph G is characterized
by the number of sampled frames T and the number of individu-
als N . For each regularly down-sampled frame i ∈ [1, 2, · · · , T],
we create a set of vertices {vi,j}

N
j=1, where vertex vi,j defines the

two-dimensional location of individual j at frame i as shown in Fig-
ure 2 (b). We down-sampled motion trajectories at every second

(a)

(b) (c)

x

y

t

Figure 2: Graph representation of a group motion clip. (a) A short
group motion clip. (b) A graph constructed from the clip. (c) Con-
ceptual view of the graph. The graph encodes time-varying group
formations.

for efficient editing of large-scale group motions. The vertices are
then interconnected by two sets of edges, formation edges (colored
edges in the figure) and motion edges (black edges). As shown in
Figure 2(c), our graph structure can be viewed as a collection of
temporally layered two-dimensional planes on which time-varying
group formations are annotated. The formation edges connect the
vertices of a graph at each plane, and the motion edges connect two
adjacent planes.

Formation edges represent the neighborhood relationships be-
tween individuals. A pair of vertices in the same plane is connected
with each other by a formation edge if the corresponding individu-
als should maintain their relative formations such that the positional
change of one leads to the positional change of the other. However,
we usually have no explicit knowledge of such relationships be-
cause group motion data simply is a set of independent trajectories.
Moreover, neighborhoods can vary according to time because each
individual character often does not keep pace with other charac-
ters, and moves at variable speeds. It is thus very challenging to
correctly identify the formational relationships. Our system relies
on a heuristic solution for defining such relationships; the Delaunay
triangulation of vertices at each plane (time-slice) produced reason-
able connectivity that associates nearby characters based on spatial
distances. Despite many desirable properties of Delaunay triangu-
lation, we can have some undesirable connections such as a long
edge between two distant characters. To alleviate this, our system
allows users to manually adjust the connectivity.

Motion edges correspond to sampled trajectories. For every vertex,
we create two adjacent motion edges to connect it with the vertex
of the corresponding character at the previous plane and the next
plane, respectively. Each vertex on the first and last planes has only
one adjacent motion edge.

4 Editing Group Motions

Once a graph has been constructed from a motion clip, a user can
deform the graph by pinning or dragging vertices to desired loca-
tions interactively. Whenever a vertex is repositioned, our system
recalculates every vertex position to minimize the shape distortion
of the original graph while satisfying the positional constraints.

To measure the distortion of a deformed graph G
′ from the original

graph G in a coordinate-invariant manner, we consider local fea-

t

(a) G (b) G’ (c) G’’

Figure 3: Graph deformation. In source animation (a), five individ-
uals are marching in two rows. The source animation is deformed
by dragging the yellow-colored vertex. (b) Laplacian deformation
could result in unnatural scaling artifacts. (c) The scale compensa-
tion step alleviates the artifacts.

tures that encode the relative position of each vertex with respect to
its adjacent vertices. Let us define a local feature c for a vertex v as
an ordered triple of vertices (u,v,w), where u and w are adjacent
to v. Then, the vertex v in the middle can be described in a local
coordinate system defined by the neighboring vertices u and w as
follows:

v = u + cx(w − u) + cyR(w − u) (1)

where R is a 90-degree rotation matrix in a counter-clockwise di-
rection. Two-dimensional vector (cx, cy) can be regarded as a local
coordinate of v with respect to the coordinate system defined by
origin u and two orthogonal bases (w − u) and R(w − u). For
notational convenience, we define a function fc that returns the de-
sired location of v by linearly combining adjacent vertices u and
w based on the local coordinate from c:

fc(u,w) = u + cx(w − u) + cyR(w − u). (2)

Now, we can measure the difference between any original feature
c = (u,v,w) and its deformed feature c

′ = (u′,v′,w′), where
u,v,w ∈ G and u

′,v′,w′ ∈ G
′, by the squared distance between

fc(u
′,w′) and v

′ as follows:

D(c, c
′) = ‖fc(u

′
,w

′) − v
′‖2

. (3)

Using the distortion metric D(·) defined above, we formulate our
motion editing process as a constrained least-squares optimization
problem of finding the optimal arrangement of free vertices that
minimizes the distortion of local features. The optimization can be
efficiently performed by using a sparse linear system solver.

This quadratic distortion metric, however, has an undesirable prop-
erty; it is invariant on the uniform scaling of local features. This
property allows original features to be unnaturally enlarged, or
shrunken since such scale distortions are not penalized by the objec-
tive function. This problem has been reported in the field of mesh
editing. To alleviate the problem, Igarashi and his colleagues [2005]
proposed a two-step optimization scheme that solves two least-
squares problems sequentially. We extend this two-step algorithm
to deal with group motion editing.

An input graph G is first deformed to yield an intermediate graph
G

′ that has minimal overall distortion of local features while al-
lowing free translation, rotation, and uniform scaling (see Fig-
ure 3(a) and (b)). Unnecessary scaling effects are then compensated
to produce the final deformed graph G

′′ in the subsequent scale-
adjustment step (see Figure 3(c)). The scale adjustment method
of [Igarashi et al. 2005] first scales deformed triangles to best
match the original ones, and then reconstructs a final mesh from the
scaled triangles. While effective in eliminating the scale distortion,
it sometimes introduces artifacts such as highly-distorted, near-
degenerate triangles, especially when the graph undergoes a large

(a) (b) (c)

Figure 4: Three types of triangular features. (a) Temporal feature.
(b) Spatial feature. (c) Spatiotemporal feature.

deformation. Directly applying the method to group motion editing
could cause motion artifacts such as sudden velocity changes in de-
formed trajectories. Instead, we apply the scale-adjustment method
only to adjust the spatial group formation at each time frame. Tem-
poral distortions such as stretched/squeezed motion trajectories are
handled separately by using a time-warping method explained in
Section 6.2.

In the following subsection, we describe how to manipulate a group
motion represented by graph G based on scale-free Laplacian de-
formation. The resulting graph G

′ represents a deformed group
motion, which is further processed to compensate scaling artifacts
in Section 4.2.

4.1 Laplacian Deformation

An intermediate graph G
′ should minimize the distortion of local

features while satisfying the positional constraints. We consider
three types of triangular features from original graph G: spatial,
temporal, and spatiotemporal features. A spatial feature of vertex
v is defined by an adjacent triangle lying on the time plane con-
taining v (see Figure 4(b)). A triangle consisting of u, v, and w

defines three spatial features, (u,v,w), (v,w,u), and (w,u,v).
A temporal feature is defined by a pair of adjacent motion edges.
Specifically, a temporal feature of vertex vt, sampled at time t, cor-
responds to an ordered triple of vertices (vt−1,vt,vt+1) where
vt−1 and vt+1 denote the previous and following vertices of vt,
respectively (see Figure 4(a)). A spatiotemporal feature is defined
by a motion edge and a formation edge. A spatiotemporal feature of
vertex vt is defined by (vt−1,wt,vt), where vt−1 is the previous
vertex of vt, and wt is an adjacent vertex of vt in the same time
frame (see Figure 4(c)). Using these features, the objective function
is defined as follows:

E1(G
′) = ES(G′) + αET (G′) + βEST (G′) (4)

where ES(·), ET (·), and EST (·) measure the distortions of spatial,
temporal, and spatiotemporal features, respectively. The weight
values α and β control the relative importance among them.

Spatial features. ES(·) measures the distortion of neighborhood
formations:

ES(G′) =
∑

c′∈C′

S

w(c)‖fc(u
′
,w

′) − v
′‖2

, (5)

where C
′

S is a set of spatial features in which both u
′ and w

′ are
connected to v

′ by formation edges, and w(c) is the inverse of
‖−→vu‖2 + ‖−→vw‖2 for discounting distant formations.

Temporal features. ET (·) reflects the distortion in individual mov-
ing trajectories.

ET (G′) =
∑

c′∈C′

T

‖fc(u
′
,w

′) − v
′‖2

, (6)

(a) source animation (final formation)

(b) deformed animation

(c) deformation without using spatio-temporal features

constraint

Figure 5: A source animation (a) is deformed by dragging a vertex
that belongs to the final frame shown on the right side of the figure.
The first two frames are constrained to be pinned down. (b) The
use of spatiotemporal term enforces the orientation of the group
formation to match its moving direction. (c) Without the spatiotem-
poral term, the formation tends to rotate regardless of its moving
direction.

where C
′

T is a set of temporal features in which both u
′ and w

′ are
connected to v

′ by motion edges.

Spatiotemporal features. The third type of features represent the
spatiotemporal relationships among vertices. Intuitively, these fea-
tures prevent arbitrary rotation of group formation with respect to
its moving direction (see Figure 5).

EST (G′) =
∑

c′∈C′

ST

‖fc(u
′
,w

′) − v
′‖2

, (7)

where C
′

ST is a set of spatiotemporal features in which v
′ is con-

nected to u
′ and w

′ by a formation edge and a motion edge, respec-
tively.

4.2 Scale Compensation

The scale adjustment begins by fitting every spatial feature in G

to best match the corresponding spatial features in the intermediate
graph G

′. The least-square fitting of each feature can be achieved
by minimizing (see [Igarashi et al. 2005] for details):

fc = ‖vF − v
′‖2 + ‖uF − u

′‖2 + ‖wF − w
′‖2

, (8)

where c is a spatial feature and v
F is constrained to satisfy v

F =
fc(u

F ,wF). Once we have fitted every spatial feature, the de-
formed graph G

′′ can be obtained by minimizing

E2(G
′′) = ESC(G′′) + α

′
ET (G′′) + β

′
EST (G′′). (9)

Here, the new energy function ESC(·) replaces ES(·) in Equa-
tion (4):

ESC(G′′) =
∑

c′′∈C′′

F

(

‖
−−−→
v
′′
u
′′ −

−−−→
v

F
u

F ‖2 + ‖
−−−→
v
′′
w

′′ −
−−−−→
v

F
w

F ‖2
)

.

(10)

(a) matching (b) transformation (c) stitch result G’’

G’

G

time

Figure 6: Group motion stitching.

Note that only the spatial features are scaled. The rationale is that
fitting temporal and spatiotemporal features can lead to sudden ve-
locity changes, which are susceptible to human eyes compared to
the spatial irregularity in scales.

Given the objective functions E1 and E2, the graph deformation
process is formulated as a two-step constrained least-squares op-
timization problem. To construct a sparse linear system that can
be efficiently solved, we employ a Lagrange multiplier scheme in-
stead of variable elimination used in [Igarashi et al. 2005] because
it is easier to implement without the needs for variable reordering
and special treatments of terms in the objective function involv-
ing constrained variables. The downside of a Lagrange multiplier
scheme is its slightly larger system matrix compared to that of vari-
able elimination. In our experiments, however, no noticeable per-
formance difference was observed in solving the sparse linear sys-
tem because the number of variables is usually much larger than the
number of constraints. It should also be noted that a Lagrange mul-
tiplier scheme can handle general linear equality constraints, e.g.,
enforcing the velocity/acceleration of a character at specific time,
pinning the relative position of a character with respect to the oth-
ers, and constraining a character to move along a line. In particular,
our system uses linear constraints to handle collision avoidance be-
tween motion trajectories as explained in Section 6.1.

5 Stitching Group Motions

Our system allows the user to merge two graphs into a single, longer
graph. Given two graphs G and G

′ having the same number of
individuals N , we build a new graph G

′′ that concatenates two
group motion clips sequentially in time. G

′′ has T = t + t′ −
1 time frames, where t and t′ are the time frames of G and G

′,
respectively.

Stitching two graphs requires three steps. At first, we need to estab-
lish one-to-one correspondences between individuals in two groups
(see Figure 6(a)). Secondly, two motion clips should be aligned
via rigid transformation (see Figure 6(b)). Finally, two group mo-
tions are concatenated by smoothly morphing group formations at
the boundary (see Figure 6(c)). The first step of the procedure can
be formulated as a bipartite graph matching algorithm [Belongie
et al. 2002] that searches a best matching (one-to-one correspon-
dences) between two sets of individuals while minimizing the total
distance between corresponding pairs. Once the matching is found,
we can align two motion clips by translating and rotating them to
best match the boundary [Kovar et al. 2002].

The final step of stitching involves smooth blending of group for-
mations. Simple linear blending of individual trajectories does not

generate desired results because the group formation is not ap-
propriately reflected. Instead, we blend triangular (spatial, tem-
poral, and spatiotemporal) features and construct a concatenate
graph by solving the linear system presented in Section 4. This
approach generates a smooth transitioning of the group formation
while maintaining the detail characteristics of individual moving
trajectories.

Blending temporal features. The individual trajectories should be
maintained in the concatenate group motion. Therefore, we copy
the temporal features of G to the first (t−1) frames of concatenate
motion G

′′ and temporal feature of G
′ to the last (t′ − 1) frames

of G
′′. Temporal features at intervening frame t are obtained by

linearly interpolating the temporal features at frame t−1 and frame
t + 1.

Blending spatial and spatiotemporal features. In order to com-
pute the smooth blending of spatial/spatiotemporal features over the
concatenate timeline, we construct an intermediate graph Ḡ that is
a simple blending of vertex positions. The spatial and spatiotem-
poral features of the intermediate graph are then copied to G

′′, in
which all three-types of triangular features are combined and solved
to produce the actual stitching of two input group motions. The in-

termediate graph Ḡ is computed as follows: Let {wi,j}
N

j=1
be the

frames of Ḡ. The frame wt,j at intervening frame t averages the
last frame of G and the first frame of G

′. All remaining frames
are determined by applying a smooth displacement mapping to G

and G
′. For frame i < t, frames vi,j of G are displaced such that

wi,j = vi,j + fa(t− i)(wt,j −vt,j), where the blending function
is

fa(∆t) = 1 − 3

(

∆t

t

)2

+ 2

(

∆t

t

)3

. (11)

Similarly, we can determine frames wi,j for t+1 < i < t + t′ − 1
by displacing the vertices of G

′.

6 Postprocess

In the postprocess phase, group motions are further refined to avoid
collision, re-timed to cope with stretched or shrunken trajectories,
and re-sampled to produce smooth trajectories by using spline inter-
polation. The fullbody motion of each character is then computed
using a locomotion synthesis method presented by [Kwon and Shin
2007].

6.1 Collision Avoidance

The deformation or stitching of a group motion can lead to colli-
sion or insufficient clearance between individuals even though our
editing method tries to maintain their relative formation. We use an
iterative method for resolving collisions (see Figure 7 and 8). The
collision avoidance algorithm begins by approximating each indi-
vidual trajectory by a time-parameterized piecewise linear curve. If
two trajectories are closer than a certain threshold at any time in-
stance, our system pulls the trajectories away by 10% of the thresh-
old and repeats this process until all collisions are resolved. To do
so, we find the exact moment when the distance between two tra-
jectories is minimized and deforms both trajectories such that the
closest pair of points on the trajectories are pulled away. Note that
the exact time and the closest pair of points can be computed an-
alytically with piecewise linear curves. The point being pushed is
expressed as a linear combination of two temporally adjacent vertex
positions. Therefore, the displacement of the point can be formu-
lated as a linear constraint, which is incorporated into the linear
system derived in Section 4. For efficiency, the deformation of the

(a) G (b) iteration 25 (c) final

Figure 7: Collision avoidance for a small (N = 5) group of char-
acters.

frame 1

frame 240

frame 450

(a) before (b) after

Figure 8: Collision handling. (a) Two groups of crowds are bump-
ing into each other. (b) Collisions are resolved iteratively while
fixing the original formations at the first and last frames. Resolv-
ing all collisions required 1997 iterations, which took about four
seconds.

graph is computed with a subgraph containing only the vertices and
motion edges corresponding to colliding trajectories.

We also provide tools for avoiding collision with obstacles consist-
ing of convex polygons and circles. If any point on a piecewise lin-
ear trajectory is inside an obstacle, we pull the deepest penetrating
point toward the nearest point on the boundary of the obstacle. This
iteration continues until all collisions between characters and obsta-
cles are resolved. Figure 9 shows a challenging collision avoidance
example.

6.2 Time Warping

The increased (or decreased) length of a deformed trajectory makes
the character to move faster (or slower) than its original speed (see

frame 1

frame 495

frame 900

(a) before (b) after

Figure 9: Forcing a circular group (a) through a narrow opening
such that the group must elongate to pass. In this specific example,
penetrating points inside obstacles are pulled toward the opening.
Resolving all collisions required 34733 iterations, which took about
163 seconds.

(a) G (b) G’’ (c) after timewarping

3.23x

1.83x

1.27x

0.72x

Figure 10: Timewarping. (a) Source animation. (b) Due to defor-
mation, the individual trajectories are stretched and thus the char-
acters on the deformed trajectories have to walk faster than on the
original trajectories. (c) Timewarping re-parameterizes the trajec-
tories to minimize excessive speedup and slowdown.

Figure 10). This speed change is often irregular; the character has
to walk faster at some time interval on the deformed trajectory and
walk slower on other intervals. Such an irregular speed change is
usually undesirable in motion editing. The goal of our time warp-
ing method is to allow characters in a deformed group motion clip
to move as closely to their original speeds as possible. It should
be noted that all characters in motion data should speedup or slow-
down at the same rate. We have considered the possibility of al-
lowing non-uniform individual time-warping, but do not aware of
any nice method that allows a group of individually time-warped
characters to keep their pace.

We formulate the time-warping problem as a least-squares opti-
mization where the objective function is defined as

Et =
T

∑

i=1

N
∑

j=1

(‖v′

i+1,j − v
′

i,j‖

∆t′i
−

‖vi+1,j − vi,j‖

∆t

)2

, (12)

where T is the number of time frames in the deformed group mo-
tion, N is the number of individuals in the group, vi,j are the origi-
nal vertex positions, v′

i,j are deformed positions, ∆t is the time in-
terval of the original motion data. Note that ∆t is constant because
the input motion data was sampled uniformly in time for construct-
ing the graph representation. ∆t′i is the non-uniform time interval
between i-th and (i + 1)-th time frames in the deformed graph.
Taking the inverse of ∆t′i as optimization variables, non-uniform
time intervals can be efficiently computed by using a sparse linear
system solver

Finally, smooth individual moving trajectories are obtained from
the time-warped graph by using non-uniform cubic interpolating
splines that pass through vertex v

′

i,j at time t′i [Bartels et al. 1987].

7 Experimental Results

In order to demonstrate the flexiblity and usefulness of our ap-
proach, we created three crowd animations, two-groups bumping,
battlefield and downtown. For the first experiment, we edited the re-
sulting motion of the collision handling example shown in Figure 7.
For the last two experiments, we edited existing group motion clips
obtained from rule-based crowd simulation, which generates a set
of two-dimensional trajectories. We synthesized the final animation
with multiple full-body characters that follow the two-dimensional
trajectories by using an online locomotion synthesis method [Kwon
and Shin 2007].

Two-groups bumping. The first example shows that our editing
scheme works well with characters walking in a variety of different
directions. In the source motion shown in Figure 11 (a), two groups
of characters are bumping into each other and passing through with-
out collisions. As shown in Figure 11 (b), such inhomogeneous

(a) before (b) after

frame 1

frame 240

frame 450

Figure 11: A group of characters moving in two different direc-
tions. (a) Original motion. (b) Editing by dragging four vertices.

groups are manipulated as a whole by dragging four vertices lo-
cated at corners of each group at the first and the last frame. The
resulting group motion does not contain any collisions without ad-
ditional collision avoidance step.

Battlefield. The second experiment demonstrates that an existing
crowd animation can be flexibly adapted to a new environment. In
the source group motion shown in Figure 1 (left), fifty characters
are densely streaming through a curved path. As shown in Fig-
ure 1 (middle), the trajectories of all characters were first rigidly
transformed to be located at the starting position of the new envi-
ronment having branched paths. The final group motion shown in
Figure 1 (right) was generated in two steps. In the first step, we
transformed the original trajectories such that the head and tail of
the trajectories are located at the beginning and end of the new path,
respectively. This was simply done by selecting a group of vertices,
and then dragging those vertices to the desired locations. In the
second step, we separated the group into two subgroups to follow
branches in the path. To do so, we manually picked characters in
a subgroup and then divided the group motion graph into two sub-
graphs. The trajectories of each group were edited again to fit to the
corresponding path. It took about five minutes to perform the entire
editing process (see Figure 12).

Town. The last example shows that our scheme can be used to
author large-scale crowd animation by using only a few, short mo-
tion clips. We created a complex crowd scene consisting of about
three hundreds characters by duplicating, merging, deforming, and
stitching 19 motion clips, which are acquired by choosing five to
fifty individuals from the battlefield example for 10 to 30 second
duration. Those clips are copy-and-pasted onto the town environ-
ment, and then edited to construct a complex animation in which a
large number of characters wandering around while avoiding colli-

Figure 12: Snapshots of the crowd animation in a battle field scene.

Figure 13: Snapshots of the crowd animation in a downtown scene.

sion with each other (see Figure 13). The total editing time required
to create this thirty second animation clip was about five hours.

In both examples, each editing operation took less than one sec-
ond on average and four seconds for deforming the largest group.
Table 1 summarizes the timing information.

8 Discussion

We introduced a novel group motion editing method that allows an-
imators to manipulate existing group motion data interactively. The
detail-preserving approach developed in mesh editing research was
successfully extended to deal with group motions. The advantage
of our method is that the user can interactively manipulate multiple
character motions as a whole and still have direct, precise control
over individual trajectories.

Our approach has several limitations. A large deformation of a
group motion can lead to unnatural speedup/slowdown of individ-
ual motions. Although our time-warping scheme mitigates such
artifacts to some extent, there are cases where characters cannot
maintain their original formation unless some characters move ex-
tremely fast. We allow the user to handle such cases interactively
rather than try to remove all artifacts automatically.

We chose to use the mesh editing algorithm presented by Igarashi
et al. [2005] because the algorithm is easy-to-implement and based
on an efficient linear system formulation. Our system can actually
take any other similar mesh editing method such as canonical con-
strained quadratic programming [Xu et al. 2007]. Probably, a more
flexible non-linear optimization method would allow us to model
high-level group behaviors and inter-personal interactions.

Even with an efficient linear formulation, our system cannot handle
a large crowd consisting of thousands characters at interactive rate.
The crowd animations in feature films and video games are even
bigger. It would be often undesirable that slight modification of
an individual motion in a crowd scene results in the change of the
entire crowd animation. A better approach would be to take only
small part of the crowd animation into consideration, while leaving
the remaining parts intact. In this way, we can edit a large crowd
interactively.

Our work currently focuses on group locomotion, in which multiple
characters walk or run in various directions. An interesting direc-
tion for future work is to deal with a wider variety of group behav-
iors, possibly captured from crowd animations, such as chatting in
a party, lining up at a ticket booth, and audience in a performance.
It would also be interesting to apply our interactive editing method
to such complex scenes as Olympic mass games that are difficult to
generate by using simulation-based methods.

Acknowledgements

We would like to thank the reviewers for their constructive com-
ments and suggestions. We are also grateful to all the members in
Zoiment Inc. for allowing us to use their mesh data. This work was
supported by the IT R&D program of MKE/IITA (2008-F-033-01).

References

ARIKAN, O., FORSYTH, D. A., AND O’BRIEN, J. F. 2003. Mo-
tion synthesis from annotations. ACM Transactions on Graphics
(SIGGRAPH 2003) 22, 3, 402–408.

Table 1: Statistics on the final group motion clips. The maximum computation time was measured by performing a deformation operation on
the largest group in the scene.

of # of # of # of total # of # of vertices maximum
frames sample frames characters groups vertices in the largest graph computation time

Two-groups bumping 450 15 30 1 450 450 219ms

Battlefield 3958 132 50 2 6600 6600 3803ms

Downtown 900 30 348 15 10440 1500 677ms

BARTELS, R. H., BEATTY, J. C., AND BARSKY, B. A. 1987. An
introduction to splines for use in computer graphics & geometric
modeling. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA.

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape match-
ing and object recognition using shape contexts. IEEE Trans.
Pattern Anal. Mach. Intell. 24, 4, 509–522.

CHENNEY, S. 2004. Flow tiles. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 233–242.

COURTY, N., AND CORPETTI, T. 2007. Crowd motion capture.
Computer Animation and Virtual Worlds 18, 4–5, 361–370.

GLEICHER, M. 1997. Motion editing with spacetime constraints.
In I3D ’97: Proceedings of the 1997 Symposium on Interactive
3D graphics, 139–148.

HUGHES, R. L. 2003. The flow of human crowds. Annual Review
of Fluid Mechanics 35, 169–182.

IGARASHI, T., MOSCOVICH, T., AND HUGHES, J. F. 2005.
As-rigid-as-possible shape manipulation. ACM Transactions on
Graphics (SIGGRAPH 2005) 24, 3, 1134–1141.

KOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Transactions on Graphics (SIGGRAPH 2002) 21,
3, 473–482.

KWON, T., AND SHIN, S. Y. 2007. A steering model for on-line
locomotion synthesis. Computer Animation and Virtual Worlds
18, 4–5, 463–472.

LAI, Y.-C., CHENNEY, S., AND FAN, S. 2005. Group mo-
tion graphs. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
281–290.

LEE, J., AND SHIN, S. Y. 1999. A hierarchical approach to in-
teractive motion editing for human-like figures. In SIGGRAPH
’99: Proceedings of the 26th annual conference on Computer
graphics and interactive techniques, 39–48.

LEE, J., CHAI, J., REITSMA, P. S. A., HODGINS, J. K., AND

POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM Transactions on Graphics (SIG-
GRAPH 2002) 21, 3, 491–500.

LEE, K. H., CHOI, M. G., HONG, Q., AND LEE, J. 2007.
Group behavior from video: a data-driven approach to crowd
simulation. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
109–118.

LERNER, A., CHRYSANTHOU, Y., AND LISCHINSKI, D. 2007.
Crowds by example. Computer Graphics Forum (Eurographics
2007) 26, 3, 655–664.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D.
2005. Linear rotation-invariant coordinates for meshes. ACM
Trans. Graph. 24, 3, 479–487.

MUKAI, T., AND KURIYAMA, S. 2005. Geostatistical motion in-
terpolation. ACM Transactions on Graphics (SIGGRAPH 2005)
24, 3, 1062–1070.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detection
analysis. In Computer Animation and Simulation ’97, 39–51.

PARIS, S., PETTRÉ, J., AND DONIKIAN, S. 2007. Pedestrian
reactive navigation for crowd simulation: a predictive approach.
Computer Graphics Forum (Eurographics 2007) 26, 3, 665–675.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER,
N. 2005. Crowd simulation incorporating agent psychological
models, roles and communication. In V-CROWDS ’05: Proceed-
ings of the First International Workshop on Crowd Simulation,
24–25.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. In SIGGRAPH ’87: Proceedings of the 14th
annual conference on Computer graphics and interactive tech-
niques, 25–34.

ROSE, C., GUENTER, B., BODENHEIMER, B., AND COHEN,
M. F. 1996. Efficient generation of motion transitions using
spacetime constraints. In Proceedings of SIGGRAPH 1996, 147–
154.

ROSE, C., COHEN, M. F., AND BODENHEIMER, B. 1998. Verbs
and adverbs: Multidimensional motion interpolation. IEEE
Computer Graphics & Applications 18, 5, 32–40.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedes-
trians. In SCA ’05: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation, 19–
28.

SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M.,
R’́OSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In SGP ’2004: Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry Processing, 175–184.

TREUILLE, A., COOPER, S., AND POPOVIC, Z. 2006. Continuum
crowds. ACM Transactions on Graphics (SIGGRAPH 2006) 25,
3, 1160–1168.

XU, W., ZHOU, K., YU, Y., TAN, Q., PENG, Q., AND GUO, B.
2007. Gradient domain editing of deforming mesh sequences.
ACM Transactions on Graphics (SIGGRAPH 2007) 26, 3, 84.

