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Abstract
This paper proposes a practical approach for
real-time simulation of large deformation and
ductile fracture. We adopt the oriented particles
approach for robust and efficient simulation
of large deformation and develop a practical
model for plastic flow and fracture. The
proposed method finds the optimal rotation
and the optimal stretch in shape matching.
The newly introduced optimal stretch leads
to a material strain that can be employed
in the plastic flow and fracture criteria. We
also propose a GPU skinning method for
real-time rendering of a deformed, fractured
visual mesh. Experimental results show that
the proposed method can robustly simulate
large, elastoplastic deformation and ductile
fracture of large visual meshes in real time.
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1 Introduction

Physics-based simulation is one of the most im-
portant techniques in film and game production.
In this paper, we focus on physics-based de-
formation and ductile fracture. These phenom-
ena have been extensively studied in compu-
tational mechanics, material science and com-
puter graphics. However, it is still a challenging
problem to robustly produce visually convinc-
ing, stable deformation and fracture in real time.

Most real-time fracture applications utilize
pre-fractured chunks of rigid bodies that shat-

ter when applied with impacts larger than a pre-
defined threshold [1]. Thus, they do not reveal
elastic deformation. On the other hand, finite
element methods based on continuum mechan-
ics can simulate accurate deformation and frac-
ture [2–6]. However, in real-time applications,
robustness and speed are often more essential
than accuracy. On that account, we focus on the
shape matching techniques [7–9] that can pro-
duce visually convincing deformation in a ro-
bust and efficient way. In particular, the oriented
particles approach [8] can create various types
of deformable objects with a small number of
simulation particles.

Based on the oriented particles approach [8],
we develop a practical model for plastic defor-
mation and fracture that accommodates material
failure at excessively stretched or compressed
material points. We extend the shape match-
ing to find not only the optimal rotation but
also the optimal stretch between the rest and de-
formed particles. The newly introduced opti-
mal stretch is employed to transfer elastic de-
formation into plastic deformation with a multi-
plicative decomposition of deformation [3, 10].
The remaining elastic deformation is supplied
to the local fracture scheme formulated with the
maximum strain criterion and fracture tough-
ness [11]. In addition, we propose a GPU skin-
ning method for real-time rendering of a de-
formed, fractured visual mesh composed of pre-
fractured fragments corresponding to the ori-
ented particles. This simple and robust method
can produce large elastoplastic deformation and
fracture of large visual meshes in real time.



2 Related Work

Physics-based simulation of deformation and
fracture has a long history in computer graph-
ics since the pioneering work of Terzopoulos et
al. [12]. A comprehensive survey in this field
can be found in [13]. One of the most popular
approaches to simulating deformable solids is to
employ a finite element method with linear tetra-
hedral elements. To reduce the linearization ar-
tifacts in large deformation, corotational formu-
lations have been successfully employed [14].
Even flat or inverted elements can be simulated
robustly if rectified as suggested in [3].

Excessive deformation leads to fracture in-
volved in crack initiation and propagation.
O’Brien and Hodgins [6] introduced a finite el-
ement method to simulate brittle fracture. This
work was further extended to ductile fracture by
incorporating plasticity [5]. Molino et al. [4]
proposed a virtual node algorithm that removes
ill-conditioned slivers in remeshing. Pauly et
al. [15] developed a meshless method for frac-
turing ductile materials. Basically, these ap-
proaches are not intended for real-time ap-
plications due to the computational burden in
remeshing and time stepping. Nevertheless,
Parker and O’Brien [16] successfully applied a
corotational finite element method to real-time
fracture in computer games by employing rel-
atively coarse tetrahedral meshes together with
splinters for geometric details of elements.

Deformable materials can be pre-fractured
and subsequently broken apart based on a va-
riety of rules. This approach is handy and fast
and thus popular in computer games and feature
films [1]. In particular, Voronoi diagrams are
widely used to generate fracture patterns at run-
time. Su et al. [17] employed a fracture pattern
aligned with an impact location at runtime. Bao
et al. [2] proposed a fracturing method for rigid
materials based on a quasi-static stress analy-
sis and a Voronoi-like fracture pattern. Zheng
and James [18] also employed a similar frame-
work, but the fracture pattern was incrementally
constructed to maintain a bounded fracture en-
ergy. However, Voronoi-like fracturing instanta-
neously gives rise to shattered fragments with-
out dynamic deformation and crack propaga-
tion. Unlike our method, these approaches are
designed for rigid or brittle materials.

Meshless deformation based on shape match-
ing is fast and robust enough for real-time ap-
plications [7], but shape matching with a sin-
gle transformation is restricted to modest defor-
mation. Its extension to lattice shape match-
ing can generate large deformation in a more
visually convincing way [9]. In this extension,
fracture is addressed by simply cutting exces-
sively stretched edges. This work is further
extended to adaptive shape matching with oc-
tree sampling and interactive cut with topolog-
ical changes [19]. Plastic deformation is also
supported with plasticity transformation matri-
ces introduced in [7]. Combined with position-
based dynamics [20], shape matching with ori-
ented particles [8] enables complex dynamic de-
formation to be simulated in an efficient and ro-
bust way, even with a small number of particles.
Our method is based on these shape matching
approaches. However, none of them addresses
ductile fracture.

Least-squares estimation of optimal rotation
from two particle sets is at the heart of the
shape matching approach. In contrast to oth-
ers, Umeyama’s formulation [21] deals with an
additional scalar parameter for uniform scaling
under the optimal rotation. We extend this for-
mulation to compute not only the optimal rota-
tion but also the optimal stretch. The optimal
stretch is represented as a symmetric matrix so
as to estimate anisotropic stretching that leads
to a material strain for plastic deformation and
fracture. To our knowledge, the optimal stretch
matrix has been formulated for the first time in
this paper.

3 Ductile Fracture with OP

Our method is based on shape matching with
oriented particles. We briefly review shape
matching with a single rigid transformation [7]
and its extension with oriented particles [8]. Dif-
ferently from the previous methods, we intro-
duce an additional optimal stretch with respect
to an optimal rotation in the shape matching pro-
cedure. The optimal stretch is employed in the
plastic flow and fracture criteria. In addition, we
enforce angular momentum conservation at each
shape matching group to rectify ghost forces that
can be exaggerated with a large time step.



3.1 Shape Matching Foundation

Optimal rotation. Given n vertices of a sur-
face mesh with mass mi, there exists a rotation
that optimally matches the rest position x̄i with
the current position xi in a least-squares sense.
This can be formulated as seeking the optimal
rotation R that minimizes

∑
mi‖Rqi − pi‖2,

where pi = (xi − c) and qi = (x̄i − c̄) are the
relative positions of the particles with respect to
the centers of mass c and c̄ at the current and rest
states, respectively. R can be obtained with po-
lar decomposition of the covariance matrix [21]:

Apq =
∑

mipiq
T
i = RSpq. (1)

The shape matching procedure given in [7] em-
ploys R to compute the goal position of every
particle, gi = Rqi + c, and then moves the cur-
rent position xi toward the goal position gi by
the amount proportional to the material stiffness.

Optimal stretch. Plastic deformation and
fracture require a stretch measure that can lead
to a strain; We find the optimal stretch S that
minimizes ∑

mi‖RSqi − pi‖2 (2)

with the optimal rotation R given in Equa-
tion (1) and the symmetric constraint S = ST

that guarantees S to be a stretch matrix. It can be
obtained by minimizing an unconstrained ver-
sion,

f =
∑

mi‖RSqi − pi‖2 + tr(l× (S− ST)),

where l is a vector of Lagrange multipliers. The
second term of f represents the condition for S
to be symmetric. Differentiating f with respect
to S gives the following equation (i.e., ∂f∂S = 0):∑

mi

(
2Sqiq

T
i − 2RTpiq

T
i

)
− 2l× = 0, (3)

where we exploited ∂
∂S

(
pT
i Sqi

)
= piq

T
i and

∂
∂S

(
qT
i S

TSqi
)

= 2Sqiq
T
i . Here, l× denotes a

skew symmetric matrix of l such that (l×)a =
l × a for an arbitrary vector a. Substituting the
covariance matrices Apq given in Equation (1)
and Aqq =

∑
miqiq

T
i into Equation (3) gives

SAqq −RTApq = l× . (4)

By transposing both sides of Equation (4), we
obtain the following equation:

AT
qqS

T −AT
pqR = −l× . (5)

Adding each side of Equations (4) and (5) can-
cels out the Lagrange multipliers and results in
an equation,

SAqq −RTApq + AT
qqS

T −AT
pqR = 0. (6)

Substituting S = ST and RTApq = AT
pqR =

Spq given in Equation (1) into Equation (6)
yields the Lyapunov equation of the form:

AT
qqS + SAqq = 2Spq, (7)

of which solution [22] can be written as
S = 2

∫∞
0

(
e−tA

T
qq
)
Spq
(
e−tAqq

)
dt. Here,

the shape matching matrix Aqq is symmet-
ric; thus it can be decomposed into Aqq =
Vqqdiag(λqq1 , λ

qq
2 , λ

qq
3 )VT

qq. Then, its expo-
nential can be simply obtained by e−tAqq =
Vqqdiag(e−tλ

qq
1 , e−tλ

qq
2 , e−tλ

qq
3 )VT

qq. Finally, a
closed-form solution of the optimal stretch is ob-
tained as follows:

S = Vqq

[(
VT
qqSpqVqq

)
◦ Λ̄qq

]
VT
qq, (8)

where Λ̄qq
ij = 2/(λqqi + λqqj ) and the binary op-

erator ◦ represents the Hadamard product that
produces the element-wise multiplication of its
operand matrices.

Discussion. The derivation of the optimal
stretch seems to be rather complicated, but its
computation (8) is simple and efficient; Only a
single matrix diagonalization of Aqq is required
because Spq is already available in Equation (1).
We also note that the optimal stretch matrix has
been formulated for the first time in this paper.
In [21], only a single scalar parameter is consid-
ered for isotropic stretching, whereas the opti-
mal stretch matrix introduced in this paper copes
with anisotropic stretching and thus it can be
successfully employed for plastic deformation
and ductile fracture.

The linear transformation A = ApqA
−1
qq min-

imizes
∑
mi‖Aqi−pi‖2 [7]. Instead of the op-

timal stretch introduced in this paper, one may
employ polar decomposition of the optimal lin-
ear transformation: A = RlSl. However, this



is equivalent to seeking a pair of R and S in
Equation (2) without fixing R with the optimal
one given in Equation (1). Thus, Rl differs from
the optimal rotation R, which is indeed required
in the shape matching deformation. This can
also be verified using polar decomposition; A =
ApqA

−1
qq = (RSpq)A

−1
qq = RRdSl = RlSl,

where SpqA
−1
qq = RdSl. Thus, Rl differs from

R unless Rd = I. Rd = I iff. the principal axes
of Spq and Aqq are the same (i.e., stretching oc-
curs along the principal axes of the rest shape).

The inset illustrates an example of the optimal
stretch. The blue quad is purely stretched with
Sl from the black quad. The axes inside a quad
depict stretching directions and magnitudes.

R

RSA=Sl

I
Shape matching with a
rigid transformation calls
for the red quad trans-
formed with the optimal ro-
tation R. Then, the opti-
mal stretch S measures how
much stretching is required to match the red to
the blue. In contrast, one might employ the polar
decomposition A = RlSl. Unfortunately, this
makes the blue quad be pulled toward the black
(not the red) because Rl = I in this example.

3.2 Shape Matching with OP

Shape matching with a single rigid transfor-
mation is restricted to modest deformation [7].
However, its extended version, shape match-
ing with oriented particles allows an efficient
and robust way of simulating visually convinc-
ing deformation in a position-based dynamics
framework [8]; A surface/volume mesh is ap-
proximated with ellipsoidal particles, and shape
matching is applied to each shape matching
group consisting of a particle and its one-ring
neighbor particles. Positions and orientations of
the particles are used for linear blend skinning of
the surface vertices. We adopt this approach for
real-time simulation of large elastoplastic defor-
mation and ductile fracture; thus, we briefly re-
formulate it in this section and then introduce
additional velocity correction for angular mo-
mentum conservation in the next section.

Suppose that ellipsoidal particles of a shape
matching group are transformed from the rest
position x̄j and rotation R̄j to the current po-
sition xj and rotation Rj (See Figure 1(a) and

(a) Rest (b) Deformed (c) Fractured (d) Remeshed

Figure 1: Deformation and fracture with OP.

(b)) 1. Then, the shape matching matrices Apq

and Aqq for the shape matching groupN can be
computed as follows:

Apq =
∑
j∈N

(
RjAjR̄

T
j +mjxjx̄

T
j

)
−Mcc̄T,

Aqq =
∑
j∈N

(
R̄jAjR̄

T
j +mix̄jx̄

T
j

)
−M c̄c̄T,

where Aj = 1
5mjdiag(a2j , b

2
j , c

2
j ) is the moment

matrix of an ellipsoid with mass mj and princi-
pal radii aj , bj and cj , M is the total mass of
the shape matching group, and c and c̄ are the
current and rest centers of mass, respectively.

Position-based dynamics for oriented parti-
cles evolves the states of the particles in three
steps. (1) Prediction: The linear velocity v
and the angular velocity w of a particle are up-
dated with the external force and torque, and
then its predicted position xp and orientation qp
are computed using an explicit Euler integration
scheme,

xp ← x + hv and qp ← exp(hw/2)q,

where h is the size of the simulation time step.
(2) Correction: The predicted positions and ori-
entations are modified to satisfy a set of con-
straints such as shape matching and collision.
(3) Velocity update: The linear and angular ve-
locities of a particle are updated backward from
its position and orientation,

v← (xp−x)/h and w← 2 log(qpq
−1)/h.

For more details, refer to [8]. In the correction
step, shape matching constraints are enforced by
Gauss-Seidel iterations where the position and
orientation of a particle participating in a shape
matching group is modified without considering
its participations in other groups.

1Rj = [raj |rbj |rcj ] when raj , rbj , rcj are unit axes of an ellipsoid.



3.3 Momentum Conservation

The linear momentum of the oriented particles
is conserved perfectly before and after shape
matching, regardless of the time step size. How-
ever, the angular momentum was not conserved
perfectly in its basic form. We observed that,
without angular momentum conservation, de-
formable bodies fallen down onto the floor were
slowly but constantly rotating. This problem
could be suppressed to some degree by set-
ting the cutoff velocity that freezes the angu-
lar motions. However, it was not easy to deter-
mine how large cutoff value should be set. The
amount of difference in angular momentum is
proportional to the time step size. We prefer a
large time step for real-time applications and so
devise an additional mechanism for perfect con-
servation of angular momentum.

The angular momentum L of a shape match-
ing group N can be computed by

L =
∑
j∈N

(
Hjwj +mjrj × vj

)
,

where Hj = Rj

[
tr(Aj)I−Aj

]
RT
j is the inertia

tensor of an ellipsoid with a moment matrix Aj

and rj = (xj−c) is the moment arm of the ellip-
soid from the center of mass of N . Let L− and
L+ be the angular momentums before and after
shape matching, respectively. Then, we need to
compensate for the difference of the angular mo-
mentum, ∆L = (L−−L+). We instantaneously
interpret the shape matching groupN as a com-
posite rigid body with a composite inertia tensor
H =

∑
j∈N (Hj −mjrj × rj×). Here, the par-

allel axis theorem is used to shift the moment of
inertia of an ellipsoid. Then, ∆L can be com-
pensated for by an instantaneous change of the
composite angular velocity, ∆w = H−1∆L.
This compensation is accomplished by velocity
correction of the ellipsoids participating in the
shape matching group N :

∀j ∈ N
(
∆vj = ∆w × rj and ∆wj = ∆w

)
.

This velocity correction is computed for each
shape matching group at the time of shape
matching but applied after the velocity update
step because velocities of the oriented particles
are recomputed backward from their positions
and orientations in position-based dynamics. In-
stantaneous interpretation of a shape matching

group as rigid is similar to the rigid impact zone
in [23].

3.4 Plastic Deformation

The stretch matrix given in Equation (8) is sym-
metric, and thus it can be further decomposed
into S = VΛVT, where Λ = diag(λ1, λ2, λ3)
with eigenvalues λi and V = [e1|e2|e3] with
orthonormal eigenvectors ei. The stretch ma-
trix has diverse relationships with the strain:
εc = V(Λ − I)VT, εg = 1

2V(Λ2− I)VT, εl =
V log(Λ)VT, where εc, εg, and εl denote the
Cauchy, Green, and logarithmic strain tensors,
respectively. We chose the logarithmic strain for
convenience of strain decomposition as in [3].

We represent plastic deformation with a mul-
tiplicative decomposition of deformation as
in [3]. At each shape matching group, the to-
tal deformation is written as F = FEFP , where
FP is a matrix representing the plastic defor-
mation stored at the shape matching group and
initialized with the identity matrix. The elas-
tic deformation is computed by FE = RS =
R(VΛVT). Then, the plasticity model [10]
equipped with creep and work hardening can be
applied as follows:

FP ←V
(
Λ · |Λ|−

1
3
)γ

VTFP ,

where γ = min
(
ν(‖εl‖−εY )
‖εl‖ , 1

)
determines how

much of the symmetric part of the elastic de-
formation is transferred to the plastic deforma-
tion in terms of the plastic flow rate ν when-
ever a plastic yield criterion exceeds the plas-
tic yield threshold εY . We adopt the plastic
yield criterion on the logarithmic strain ‖εl‖ =
‖ log(FE)‖2 = maxi(| log(λi)|). The plastic
yield εY is increased by κ‖εl‖∆t after the plas-
tic update, where κ controls the amount of work
hardening and ∆t is the time step.

Once a portion of the elastic deformation is
absorbed by the plastic deformation, the remain-
ing deformation becomes the elastic deforma-
tion:

FE = RS← RV
(
Λ1−γ |Λ|

γ
3
)
VT. (9)

The stretch matrix S is used to determine mate-
rial failure in Section 3.5. The plastic deforma-
tion FP is incorporated into the computation of



the shape matching matrices and the goal posi-
tions by replacing the definition qi = (x̄i − c̄)
with qi = FP(x̄i − c̄), as in [7]. The shape
matching matrices for plastic deformation are
obtained as follows:

Apq = ApqF
T
P and Aqq = FPAqqF

T
P .

The goal positions are computed by gi =
RFP(x̄i − c̄) + c. Figure 4 shows examples
of three rest shapes after plastic deformation.

3.5 Ductile Fracture

A material fails when applied with an excessive
stretch or compression. We are interested in
the material failure leading to ductile fracture.
The key difference between brittle and ductile
fracture can be attributed to the amount of plas-
tic deformation that the material undergoes be-
fore fracture [5]. Ductile materials experience
large amounts of plastic deformation while brit-
tle materials experience little or no plastic de-
formation. We already paved a way to incor-
porating plastic deformation into the simulation
framework. Thus, ductile fracture can be im-
plemented just by employing a fracture criterion
not on the total deformation but on the elastic
deformation, given in Equation (9).

In the graphics literature, the maximum stress
criterion has been widely adopted for fracture,
which assumes that a material fails when the
maximum principal stress is larger than the uni-
axial tensile strength of the material [2, 4, 14].
To employ this criterion, a stress tensor must be
obtained from a strain tensor using a constitu-
tive relation. However, it is cumbersome to in-
troduce additional material constants for a stress
tensor. Thus, we employ another phenomeno-
logical failure criterion, the maximum principal
strain criterion [11], which directly deals with
principal strains.

Suppose that we are examining a shape
matching group N consisting of an ellipsoid E
and its one-ring neighbors. Fracture is initiated
with a local fracture plane when the magnitude
of the principal elastic strain of the shape match-
ing group N exceeds a user-specified fracture
toughness τ . Assume that we are employing
the logarithmic strain tensor and | log(λi)| > τ .
Then, we set the fracture plane to be perpendic-
ular to the eigenvector ei corresponding to the

principal elastic stretch λi and pass through the
center of mass of the shape matching group N .
If the plane intersects with an edge between the
ellipsoid E and one of its neighbors, then we cut
off the edge (See Figure 1(c)). A shape matching
group involved with fracture calls for recompu-
tation of its shape matching matrix Aqq. In ad-
dition, fracture entails remeshing of the visual
mesh (See Figure 1(d)). Remeshing will be de-
scribed in Section 4.

4 Visualization of Fracture

Up to now, we have considered only a simula-
tion mesh that consists of a set of oriented parti-
cles and a set of edges among the particles. This
section addresses how to maintain a deformed,
fractured visual mesh for rendering along with a
simulation mesh. A visual mesh of a deformable
body is paired with a simulation mesh of n par-
ticles in such a way that, when shattered com-
pletely, it is partitioned into n fragments, each of
which solely depends on a unique particle (See
Figures 1 and 2). We use a fragment mesh to
represent the geometry of a fragment. Then, the
visual mesh becomes, in its basic form, a com-
posite mesh of the fragment meshes. Fragment
meshes must be watertight at each interface un-
til fractured. Thus, an interface surface between
a pair of fragments corresponds to an edge in
the simulation mesh, of which both ends are the
particles associated with the fragments.

Visualization of fracture is formulated as
maintaining the topology of a visual mesh in
accordance with a simulation mesh, while de-
forming vertices of the visual mesh. We employ
linear blend skinning for vertex deformation as
in [8]. Each vertex depends on the nearest ori-
ented particle and its one-ring neighbors. Re-
garding fracture, we propose two methods that
maintain a watertight, visual mesh from given
fragment meshes. One is designed for offline
applications where the initial, compact visual
mesh is progressively deformed and split at the
interfaces, while fractured at runtime. The other
is for real-time applications where GPU skin-
ning makes a pair of polygonal fragment sur-
faces watertight until fractured. For fragment
mesh generation of a deformable body, a set of
pre-fracturing techniques can be employed, such
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Figure 2: Fracture and fragments.

as Voronoi cell decomposition [1], approximate
convex decomposition [24], and volumetric cell
decomposition with fracture patterns [25].

4.1 Runtime Splitting of a Visual Mesh

A polygonal surface representing a fragment in-
terface is invisible and useless until fracture oc-
curs between the fragments. We maintain a wa-
tertight, compact visual mesh where duplicate
or invisible faces do not exist at the intact inter-
faces. At first, an initial watertight visual mesh
is built up by composing all the faces of the frag-
ment meshes except those at the fragment in-
terfaces. Whenever an interface between a pair
of fragments is fractured (i.e., the edge between
the corresponding particles is disconnected), all
the faces of the interface become visible and
split for each fragment. The vertices of the in-
terface require special care to make the topol-
ogy of the visual mesh synchronized with the
simulation mesh, which is in contrast to rigid
fracturing where all the vertices of the interface
are split unconditionally [18, 25]. Each vertex
is checked to see if it can be split or not (See
Figure 2). A vertex should be split when the
fragments sharing the vertex is not connected
through them (e.g., v11 and v21 in Figure 2(b)).
Otherwise, it cannot be split (e.g., p1, p2, p3
sharing v2 are connected; thus, it cannot be split
in Figure 2(b)). As edges are disconnected, the
connected graph becomes separated into many
connected components. A connected compo-
nent with a single particle corresponds to a frag-
ment (See Figure 2(c)).

4.2 GPU Skinning with Fragment Meshes

It is no surprise that, for large visual meshes, up-
dating and transferring the vertex positions and
the connectivities into the GPU side results in
a performance bottleneck rather than simulating
ductile fracture in the CPU side. For interac-
tive applications, we propose a GPU skinning

method that supports runtime fracture as well
as deformation. At the beginning, all the frag-
ment meshes of the particles are transferred into
the GPU side. At runtime, each pair of polyg-
onal surfaces representing a fragment interface
is kept watertight until the corresponding edge
is disconnected in the simulation mesh. Option-
ally, a geometry shader can be employed to skip
rasterization of an invisible interface surface not
fractured yet.

Pre-fracturing makes a vertex of an interface
instanced at multiple fragments. To render a
smooth surface as well as a sharp interface, each
instance of the vertex is assigned with a nor-
mal for each adjacent face. Then, multiple in-
stances of the vertex need to have the same po-
sition with consistent normals until the interface
is fractured (e.g., the vertex v11 of the particle p1
and v21 of p2 are instanced from the same ver-
tex v1; thus they have the same position until
the edge p1p2 is disconnected in Figure 2). We
employ linear blend skinning that computes the
position and normal of a vertex using the near-
est particle and its one-ring neighbors. Thus, the
nearest particles at the multiple instances should
be the same for watertight skinning. As fracture
occurs, fragments connected locally at a vertex
become disconnected. Accordingly, the nearest
particle at an instance of the vertex should be up-
dated as the nearest one among the particles still
connected locally to the instance (e.g., the near-
est particle changes from p3 to p2 at v22 after the
edge p2p3 is disconnected, whereas the nearest
particle is still p3 at v12 in Figure 2).

When an edge is disconnected in the simula-
tion mesh, the nearest particle needs to be up-
dated only at the vertices of the corresponding
interface. In addition, particles undergoing frac-
ture at a frame exhibit spatial coherence. Based
on these observations, we apply spatial cluster-
ing to the fragments so as to efficiently trans-
fer the nearest particle information into the GPU
side as per-vertex data on a per-cluster basis.
Accordingly, pre-fracturing is modified to oc-
cur on a per-cluster basis. A watertight, compact
visual mesh composited from a cluster of frag-
ments is replaced with the individual fragment
meshes, when the cluster of fragments is actu-
ally involved with fracture. This excludes raster-
ization of invisible faces and linear blend skin-
ning for invisible vertices. The vertex shader



(a) Clusters (b) OBB (c) OP (d) Fracturing a dinosaur model with 20 particles

Figure 3: Simulation mesh obtained with k-means clustering.

needs the simulation mesh for linear blend skin-
ning. Because the size of the simulation mesh
is larger than the maximum size of uniform pa-
rameters, it is fetched into the GPU side at each
frame as a single texture.

5 Experimental Results

The proposed technique was implemented as an
Autodesk MAYA plug-in for contents creation
and offline rendering. It was also implemented
as a Unity3D plug-in with Cg shaders for in-
teractive application and real-time rendering of
large scenes. All experiments were performed
with an Intel I7-3770K 3.5GHz CPU, 8GB
memory, and an NVIDIA GeForce GTX680.

The fragments of a deformable body come
up with a simulation mesh. Thus, we need not
only the geometry of a deformable body but
also its fragment meshes. One of the most in-
tuitive ways of obtaining fragment meshes is
to employ Voronoi-like fracture patterns in a
tetrahedral mesh of a given deformable body.
For convenience of implementation, we apply k-
means clustering to the centers of the tetrahedra
while taking into account the connectivities in
the mesh. Then, each cluster of tetrahedra be-
comes a fragment corresponding to an oriented
particle. The covariance of the tetrahedra gives
the initial orientation of the particle and the ori-
ented bounding box gives the radii of the particle
as in [8]. This process is illustrated in Figure 3.
Fragment meshes can also be obtained in many
different ways [1, 25].

Figure 4 compares plastic deformation of
three vertical elastic bars with different plastic-
ity. The top end of each bar is twisted for one
full rotation while its bottom end is fixed as il-
lustrated in Figure 4(a) and (b). The bars shown
in Figure 4(c), (d), and (e) with low, medium,
and high plasticity undergo large amounts of

(a) Rest (b) Twist (c) Low (d) Mid (e) High

Figure 4: Twisted bars with different plasticity.

Figure 5: Four plates with increasing plasticity.

plastic flow during the twisting, and thus do not
return to their original shapes after being re-
leased. The simulation mesh of each bar con-
sists of 320 particles and 1,888 edges.

The animation of fracturing ductile plates in
Figure 5 demonstrate a range of visual effects
with different plasticity parameters. The left-
most inset shows the behavior of a nearly brittle
material. From left to right, the materials be-
come more ductile. Each scene consists of 300
particles including a single particle for the pro-
jectile. Figure 6 shows two bunnies struck by
a heavy weight. They undergo large deforma-
tion and ductile fracture due to collisions with
the weight and the floor and self-collisions. The
simulation mesh of a bunny model consists of
300 particles and 1,288 edges. The left inset
shows the behavior of a purely brittle material,
and the right shows the effects of plasticity.

For real-time simulation and rendering of



Figure 6: Fracturing two bunnies with a heavy projectile. The left one is brittle and the right is ductile.

Figure 7: Real-time simulation of a large scene.

large scenes, we exploit not only a multi-core
CPU but also a many-core GPU. Figure 7 shows
a screenshot of a simple FPS-like game devel-
oped with the Unity 3D game engine. The simu-
lation is performed with a simple parallelization
using OpenMP and GPU skinning described in
Section 4.2. Currently, collision detection and
response are handled in a single core. The scene
consists of 12 deformable models with 2.7K par-
ticles and 9.4K edges for the simulation meshes.
As the simulation progresses, the deformable
models are falling down to the floor. At the end
of the simulation, the visual meshes become 849
components with 479K vertices and 246K trian-
gles. The simulation runs about 30 FPS with 2
sub-steps for collision detection and response.
On the average, shape matching, collision han-
dling, and fracturing take 54, 45, and 1 percent
of the computation time, respectively.

6 Conclusion

We have presented a practical approach to real-
time simulation of ductile fracture. The oriented
particles approach [8] is employed for robust
and efficient simulation of large deformation,
and the shape matching procedure is extended to
find not only the optimal rotation but also the op-
timal stretch. This optimal stretch is used to for-
mulate the plastic flow and fracture criteria for

material failure at excessively stretched or com-
pressed material points. We have demonstrated
that the proposed method runs in real time even
for large visual meshes and it can simulate large
deformation and ductile fracture robustly.

Our method is based on shape matching with
oriented particles; the physical behavior is de-
pendent on the simulation mesh so that it is not
easy to support adaptive refinement of the simu-
lation mesh. Thus, a pre-fractured fragment cor-
responding to a single particle cannot be frac-
tured into smaller ones. In the same vein, the
pre-fractured fragments cannot be aligned with
a point of impact given at runtime. These short-
comings could be alleviated to some degree if
dynamic fracture with a fracture pattern [25] is
employed to produce detailed sub-fragments at
runtime. In addition, one can create fine de-
bris and dust distributed over a newly-exposed
fragment interface as in [16, 25]. Currently, we
detect collisions using the ellipsoidal particles
themselves, as in [8], not their corresponding
fragment meshes. We plan to incorporate frag-
ment meshes for collision handling.
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